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Executive Summary

Fabri Sciences Inc. has advanced the development of a robotic system for automated dataset
generation, as specified by Kondor Devices Inc. This 9-axis system is designed to system-
atically photograph aluminum slides sputtered with tantalum at controlled angles and dis-
tances—producing datasets used for AI training to improve wound analysis and patient care.

Tantalum is a specialized metal used to create slides embedded with microscopic circles lined
with antigens. When blood or urine samples are introduced into these circles, certain antibodies
will react with the antigen-lined surface. A microscopic amount of protein coagulation occurs
at the surface of the slide, allowing for certain wavelengths of visible light to reflect off of the
tantalum surface. As a result, the tantalum will reflect specific wavelengths of light depending
on the presence of unique antibodies. Such technology is commonly used by labs for COVID-19
diagnostics. By precisely adjusting the distance and angle of a camera relative to the slides, we
can capture unique light patterns that help indicate the presence of disease.

Traditionally, determining the ideal conditions (angles, distances, lighting) requires a lab-based
setup with tight control over each parameter. This process is not automatable, as it involves
physically repositioning components like cameras and lights to test each condition.

The team’s 9-axis robotic system automates all these adjustments—angles, distances, and
lighting—allowing us to rapidly test a virtually limitless range of configurations without manual
intervention. Where previously only 2 slides could be processed per day, the team’s system
enables data collection from over 30,000 slides in the same time frame—vastly accelerating
research and enabling more accurate diagnostics.

Over the course of all three phases, a total of 625 engineering hours have been allocated to
this project, amounting to a manpower cost of $56,250. This exceeds the original estimate of
541 hours projected prior to Phase III, as additional time was required to address unforeseen
challenges in both mechanical assembly and software integration.

The prototype was completed at a subtotal cost of $5,399.70—coming in more than $4,000
under the original budget of $10,000. Final validation will focus on achieving clinical-grade
dataset reproducibility through rigorous performance testing.

The final design integrates iPhone cameras, a custom-designed gantry system, robotic arm,
gripper assembly, and a dedicated ROS-iOS interface. Together, these components enable
seamless, high-throughput data collection using tantalum slides—all in a cost-effective package
that aligns with Kondor Devices’ operational objectives.

Fabri Sciences is proud to present this working prototype as part of the Phase III deliverables,
demonstrating both its technical capabilities and real-world potential.
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1 Introduction

The healthcare industry continually seeks faster and more precise diagnostic tools for disease
detection and patient care. This imperative has driven Kondor Devices Inc. to partner with Fabri
Sciences Inc. in the development of a 9-axis robotic system for automated dataset generation.
By capturing detailed images of tantalum-sputtered aluminum slides at controlled angles and
distances, the system provides extensive datasets suitable for AI-driven analysis, as well as
system accuracy validation for the expansion of Kondor’s blood diagnostic technology onto
mobile devices.

While tantalum slides offer significant promise for clinical diagnostics—particularly in detecting
diseases such as COVID—current research and testing methods typically require a strictly
controlled laboratory environment. Through the team’s system, Fabri Sciences enables a shift
from limited manual testing to high-throughput, fully automated image capture, thus reducing
operational costs and expediting research timelines.

2 Project Background

2.1 Current Challenges in Laboratory Testing

In many research facilities, testing the subtle light diffraction and reflection properties of
tantalum slides involves a labor-intensive process. The slides, outfitted with antigen-lined
microcircles, must be observed under meticulously controlled angles, distances, and lighting
conditions. Laboratories often deploy static rigs and rely on trained personnel to reposition
slides and equipment, achieving only incremental data collection—commonly constrained to
just a few slides per day. A render of Kondor’s legacy camera apparatus is included below:
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Figure 1. Legacy camera apparatus used in clinical lab settings.

This approach not only limits throughput but also restricts accessibility: only labs with the
necessary specialized equipment and environmental controls can feasibly perform these tests.
Consequently, the potential for broader clinical research and faster diagnostic validation remains
underutilized.

2.2 Motivation for an Automated Solution

By integrating multi-axis movement with advanced imaging, the team’s 9-axis robotic system
overcomes these limitations. The robotic arm can adjust angles, distances, and lighting param-
eters on-the-fly, allowing the system to process tens of thousands of slides in a fraction of the
time it would take under manual conditions. As such, the data required for AI model training
can be gathered exponentially faster and more accurately, potentially transforming diagnostic
capabilities across medical fields.

Moreover, the team’s system’s modular design ensures it can be replicated or adapted by any
end-user with access to a compatible robotic arm—expanding beyond the traditional lab-centric
model. This innovation moves the testing process toward a more flexible, decentralized setup,
making high-throughput analysis of tantalum slides feasible in diverse clinical and research
environments.

2
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2.3 Tantalum Slides and Light Refraction

Tantalum is uniquely suited for this diagnostic process because of its high optical contrast and
stability when sputtered onto aluminum. Each slide is embedded with an array of precisely pat-
terned microcircles lined with biological antigens. When a blood or urine sample is introduced,
these antigens bond with present proteins or pathogens, forming a thin biological film across
the surface of each microcircle.

This thin film creates a 3D interference environment. Light refracted or reflected off these films
behaves differently depending on the biological content of the sample. Subtle shifts in angle,
intensity, and diffraction patterning can indicate the presence or absence of disease markers.

Figures 2 and 3 show both the physical appearance of the tantalum slides and a simplified
diagram illustrating how light interacts with the thin film created by sample bonding. The
ability to control lighting, camera position, and angle is critical to capturing consistent and
useful data for diagnostic training.

Figure 2. Tantalum-sputtered aluminum
slides with micro-patterned antigen wells.

Figure 3. Diagram of light refraction through
a thin biological film formed by antigen-
sample bonding.

2.4 System Impact and Further Validation

In total, 625 engineering hours have been dedicated to developing this prototype—an invest-
ment reflecting the system’s complexity and the unforeseen assembly and software integration
challenges encountered during Phase III. These challenges have informed design improvements,
ensuring that the final product is robust, extensible, and capable of delivering on its promise of
faster, more comprehensive data acquisition.

Ultimately, the 9-axis robotic system aims to achieve clinical-grade dataset reproducibility.
Ongoing and future validation efforts will assess how well the system’s automated processes
align with rigorous performance standards required for clinical diagnostics. By addressing the

3
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limitations of current lab-based approaches and offering a scalable, user-friendly alternative,
Fabri Sciences Inc.’s prototype stands to make a substantial impact on medical diagnostics and
beyond.

3 Design Specification Revisions

Revisions to the original design specifications were made throughout the development process
to reflect engineering constraints and prototype findings. Full details, including the updated
compliance matrix and revised specification table, are provided in Section 8 and Appendix A,
respectively.

4 Final Design Solution

The final prototype presented in this report builds upon the concepts developed during Phase
II, where multiple design configurations were evaluated and refined. Phase III focused on
translating these conceptual models into a fully functional and physically integrated system.
The core subsystems finalized during this phase include the gripper design, robotic arm, gantry
system, cloud server, and the combined Robotic Operating System (ROS) and computer vision
interface.

To ensure fidelity between the design intent and the physical implementation, an extensive CAD
model was created during Phase II. This digital model served as the foundation for mechanical
integration, wiring layout, and subsystem alignment. Figure 4 shows the fully assembled CAD
model used as a reference for manufacturing and system integration.

4
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Figure 4. Fully assembled CAD model developed during Phase II conceptual design.

Compared to the deployed prototype, shown in Figure 5, the overall design remained highly
consistent. The primary differences include the addition of tantalum slides and ArUco marker
boards—both developed in Phase III to support computer vision and slide alignment within the
ROS framework. It should be noted that ArUco marker boards are printed patterns consisting
of unique square fiducial markers that can be easily detected and identified by computer vision
algorithms, enabling precise localization and orientation of components within the system.
Additionally, the vacuum pump and air tubes were physically integrated but not modeled in the
original CAD due to their flexible nature and vendor variability.

Despite these minor deviations, the final system closely matches the original CAD model
in form and function, validating the robustness of our Phase II conceptual design work and
demonstrating the team’s ability to execute a precise and well-integrated build process.

5
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Figure 5. Deployed prototype system featuring tantalum slides, ArUco marker boards, and
added pneumatic lines.

4.1 Gripper Design

The final concept selected for the gripper subsystem was a vacuum pad–based design. After
evaluating several alternatives during Phase II, the vacuum gripper was chosen due to its
simplicity, reliability, and compatibility with off-the-shelf components. The selected assembly
was sourced from McMaster-Carr and features a threaded M6 attachment specifically suited for
robotic arms. This commercial vacuum gripper is rated to lift objects up to 5 pounds—well
beyond the force requirements for handling lightweight tantalum slides.

Figure 6 shows the exploded view of the vacuum assembly, which is composed of multiple
modular parts for ease of replacement and maintenance. The full bill of materials for this
subsystem is listed in Table 1.

To adapt the vacuum assembly for our robotic arm, a custom hub adapter was designed and 3D
printed in-house. This part allowed for secure interfacing between the M6-threaded gripper and
the robotic arm’s native mounting plate. The adapter uses a 12 mm M4 screw to create a flush,
rigid connection, ensuring repeatable accuracy during motion. To connect the adapter to the
robotic arm, keyhold slots are utilized. This adapter is shown separately in Figure 7.

6
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Figure 6. Exploded view of the vacuum pad
gripper assembly used in the final design.

Figure 7. 3D printed adapter used to con-
nect the vacuum assembly to the robotic
arm via M6 and M4 interface.

Table 1: Simplified bill of materials for the suction-based gripper design.

Label # Part # Description Qty

– VAC-000 Complete Vacuum Assembly 1

1 VAC-001 Vacuum Pad 1

2 VAC-002 Vacuum Pad Attachment Piece 1

3 VAC-003 Base Plate for Attachment 1

4 VAC-004 M6 x 1mm Attachment Piece 1

5 VAC-005 6mm Barbed Side Air Connection 1

– VAC-006 Air Tubes Set 1

– VAC-007 Vacuum Pump 1

– VAC-008 3D Printed Gripper Adapter 1

7
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4.2 Robotic Arm

The final design concept for the robotic arm is the AR4-MK3, an open-source and DIY model that took
around 100 hours to build for prototype integration. It supports ROS2 (Robotic Operating System 2),
which is a critical requirement for the overall system to function. An annotated model of the AR4-MK3
is shown in Figure 8 along with the corresponding parts list in Table 2.

Figure 8. AR4-MK3 robotic arm where part classification is found in Table 2.
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Table 2: Parts List for AR4-MK3 Robotic Arm

Label # Part Name Qty Part Description

1 Base Plate 1 Provides stability and support for the arm

2 Base Rotation Motor 1 Controls the rotation of the entire arm
around its vertical axis

3 Lower Arm Segment (Shoul-
der Link)

1 Connects the base to the mid-arm; respon-
sible for major lifting movements

4 Shoulder Motor 1 Drives the shoulder joint, enabling verti-
cal movement of the lower arm

5 Mid-Arm Segment (Elbow
Link)

1 Connects the shoulder to the elbow, ex-
tending the arm’s reach

6 Elbow Motor 1 Controls the bending motion at the elbow
joint

7 Upper Arm Segment (Wrist
Link)

1 Connects the elbow to the wrist, allowing
controlled precision movements

8 Wrist Pitch Motor 1 Controls the up-and-down tilting motion
of the wrist

9 Wrist Roll Motor 1 Rotates the wrist around its axis for better
positioning

10 Wrist Yaw Motor 1 Adjusts the side-to-side movement of the
wrist

11 End Effector (Gripper) 1 Allows the arm to grip, hold, or manip-
ulate objects. It will be replaced by the
gripper design

12 Control System 1 Includes the control board with 6 mo-
tor drivers, power supply, and all neces-
sary wiring and connectors for signal and
power distribution

Important aspects of the AR4-MK3 [1]:

• Payload capacity is 1.9 kg

• Mass is 12.25 kg

• DIY build

• Maximum reach is 62.9 cm

9
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4.3 Gantry System

Fabri Sciences was able to develop a 3-axis robotic gantry system (a mechanical platform that moves
a payload in linear directions) to precisely position a camera mounted on a robotic arm. The primary
objective is to capture images at specific angles for dataset generation. It is important to note that the
gantry subsystem is strictly for internal use and will not be consumer-facing; its purpose is to aid in
dataset creation for the iOS app development that the client requested.

An annotated model of the robotic gantry’s main structure is presented in Figure 9, with the corresponding
parts list in Table 3.

Figure 9. Annotated Gantry subassembly where part names are found in Table 3.

10
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Table 3: Parts List for Gantry Assembly

Label # Part Name Qty Part Description

1 Aluminum Extrusions 25 m Includes different dimensioned 20 series
extrusions for structural support and rein-
forcement

2 Aluminum Extrusion Fasten-
ers

8 pcs Used to ensure proper spacing and align-
ment of components

3 HGR20 Rail 2 pcs Linear guide rails that provide smooth
movement for the gantry system

4 HGR20CA 4 pcs Linear rail blocks that slide along the
HGR20 rails, allowing motion control

5 Robotic Arm Plate 1 pc Mounting plate for securing the robotic
arm to the gantry system

6 Rotary Axis Assembly 1 pc Rotational mechanism allowing con-
trolled movement of the robotic arm

7 Linear Axis Actuator 1 pc Example concept to provide linear motion
for moving the robotic arm along a single
axis

8 Brackets 44 pcs Aluminum corner brackets for securing
and reinforcing extrusion connections

9 NEMA 23 Stepper Motor
(Linear Axis)

1 pc High-torque (3.0 Nm) stepper motor used
to drive the linear motion system [2]

10 NEMA 23 Stepper Motor
(Rotary Axis)

2 pcs High-torque (3.0 Nm) stepper motors used
for control of the rotary axis motion [2]

The final linear actuator design uses a ball screw-driven linear motion system, powered by an electric
motor that transmits torque to the screw through a coupling. The ball screw provides gantry movement
along the rail, with minimal friction due to ball bearings circulating within the helical grooves of the
screw. Position sensors that are integrated within the NEMA 23 stepper motor (the team didn’t have to
design them) continuously monitor the system to ensure accurate gantry positioning and reliable control.

An annotated model of the ball screw linear actuator is shown in Figure 10, with the corresponding parts
list in Table 4. The actuator’s dimensions are provided in Figure 11, with the stroke length of 1100 mm
highlighted.

11
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Figure 10. Ball Screw Linear Actuator where part classification is found in Table 4

Table 4: Parts List for Ball Screw Linear Actuator

Label # Part Name Qty Part Description

1 Aluminum Profile Including
Linear Rails

1 Structural frame of the actuator, providing
mounting points and linear guidance for
the carriage

2 Ball Screw Rod 1 Translates rotational motion into linear
motion; 5 mm lead (pitch)

3 Carriage Plate 1 Plate that connects to the main robotic arm
plate via a mounting bracket

4 Coupling 1 Connects the motor shaft to the ball screw,
compensating for slight misalignments

5 Locking Support Seat 1 Provides rigid support for the ball screw,
ensuring stability and reducing deflection

6 NEMA 23 Motor Bracket 1 Securely mounts the motor to the actuator
frame

7 NEMA 23 Stepper Motor 1 Motor responsible for driving the ball
screw mechanism

12
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Figure 11. Dimensions of Ball Screw Linear Actuator.

Key aspects of the ball screw linear actuator [3]:

• Maximum linear speed is 0.3 m/s

• Backlash is 0.05 mm (Max backlash for C7 precision grade ball screw) [4]

• 5 mm lead (pitch)

Since the ball screw for this linear actuator (Screw Model: SFU2005) is single-started, the lead and pitch
values are the same.

4.4 Cloud Server

The robotic dataset-generation system designed by Fabri Sciences integrates advanced subsystems to
coordinate robotic motion, image capture, and backend data management. This architecture involves
precise communication between the ROS2 robotic arm, an iPhone-based imaging application, and a
backend server that manages state synchronization, high-bandwidth data transfers, and metadata storage.
Specifically, the iOS application leverages Apple’s AVFoundation for efficient RGB-depth image capture,
coordinated in real-time with robotic arm movements using a custom capture queue.

Communication between subsystems employs WebSockets for real-time commands and RESTful APIs
for reliable bulk data transfer. Additionally, the infrastructure is designed to scale using cloud services
such as AWS EC2, S3, and RDS to support future multi-robot deployments. Comprehensive technical
details regarding subsystem integration, image acquisition techniques, network architecture, and cloud
scalability strategies are elaborated in Appendix D.

4.5 Robotic Operating System (ROS)

The prototype integrates the Robot Operating System (ROS) as the core communication layer between
software and hardware, enabling precise, coordinated control of the robotic arm. A full simulation envi-

13
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ronment—featuring MoveIt 2 for motion planning, Gazebo for physics, and Rviz for visualization—was
used to validate motion sequences before hardware deployment, minimizing risk and development time.
Once verified, the control stack was transitioned to the physical system with minimal adjustments. Further
details on ROS integration, and kinematic modeling are available in Appendix E.

4.6 Computer Vision

The prototype features a custom computer vision pipeline that accurately determines the spatial relation-
ship between the robotic arm and protein slides using ArUco fiducial markers and refined depth map
generation. Initial tests with the iPhone’s onboard depth camera yielded poor results, but the augmented
system significantly improved spatial accuracy and consistency under varying conditions. By directly
measuring translation and rotation vectors in the image frame, the system compensates for mechanical
imperfections such as backlash or misalignment, enabling precise robotic operation. Additional technical
details are available in Appendix F.

14
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5 Critical Design Analysis
An overview of the critical design analysis is shown in Figure 12 with further explanation divided into
the two high-level design categories.

Figure 12. Critical Design Analysis Flowchart

5.1 Electro-Mechanical Design

This section presents the physical components of Fabri Sciences Inc.’s solution, with focused analyses
of the gripper, gantry and linear actuator system, and robotic arm.

5.1.1 Gripper Design

The gripper utilizes a vacuum pad mechanism to securely hold items. Calculations were performed to
determine the theoretical maximum holding force of the pad. Under ideal conditions, assuming a perfect
seal and full surface contact, the gripper is capable of exerting approximately 57.45 N, equivalent to
12.92 lbs of holding force.

However, the manufacturer specifies a conservative working load of 2.82 lbs at the operating vacuum
level of 24 in Hg, accounting for real-world factors such as:

• Minor leaks due to imperfect sealing,

• Material deformation under load,

• Safety factors and structural limitations of the vacuum pad.
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While the vacuum pump is capable of achieving an ultimate vacuum of 2 × 10−2 Pa with a flow rate of
9.6 CFM, the practical performance is limited by these factors. For further details on the calculation
process and assumptions, refer to Appendix B.1.

5.1.2 Gantry and Linear Actuator Design

The gantry system uses a ball screw linear actuator driven by a NEMA 23 stepper motor with a rated
torque of 3.0 Nm. Calculations were performed to verify whether the motor provides sufficient torque to
move the combined weight of the robotic arm and its aluminum mounting plate.

Under worst-case assumptions, where the full mass of both the robotic arm (12.25 kg) and the aluminum
plate (5.36 kg) is applied as load, the total force due to gravity is approximately 172.79 N. Applying this
to the torque formula for a ball screw actuator and accounting for system efficiency, the required torque
is:

𝑇 ≈ 0.155 Nm

This is significantly lower than the motor’s maximum output of 3.0 Nm, confirming that the selected step-
per motor has ample capacity for the application. For detailed step-by-step calculations and assumptions,
refer to Appendix B.3.

5.1.3 Robotic Arm Design

The robotic arm used in this design is the AR4-MK3. Two main analyses were conducted: forward
kinematics and inverse kinematics, to ensure accurate positioning of the end-effector in three-dimensional
space.

The forward kinematics analysis derived the transformation matrices for each joint using the Denavit-
Hartenberg (D-H) method. Multiplying these matrices yielded the end-effector’s position as:

(𝑥, 𝑦, 𝑧) = (327.85, −52.83, −0.36) mm

and its orientation as:

(𝜙, 𝜃, 𝜓) = (1.57, 0.0032, −1.572) radians

These results confirm the correct geometric configuration of the arm and its capability to reach the
desired workspace.

The inverse kinematics analysis applied Newton’s method to solve for the joint angles that achieve a
target end-effector position of:
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(200, 300, 500) mm

Starting from an initial guess, the iterative process successfully reduced the positional error, with the first
update yielding a new joint configuration that significantly improves alignment with the target. Details
of this iterative solution process are documented in Appendix B.2.

These analyses validate that the AR4-MK3 arm can achieve the required range of motion and positional
accuracy for the application.

5.2 Software-Infrastructure Design

This section outlines the software infrastructure of Fabri Sciences Inc.’s solution, with a focus on ROS.

5.2.1 Robotic Operating System (ROS) Design

The software system is built on the Robot Operating System (ROS), which acts as the main communication
hub between the user, microcontrollers, and robotic hardware. ROS takes user commands—like moving
the robotic arm to a certain position—and turns them into clear instructions for the motors and sensors.
These instructions are then carried out by the microcontrollers to control the physical robot. A full
explanation of this setup is provided in Appendix E.

The software is organized into different parts, each with its own job:

• annin ar4 description: Describes the robot’s shape and components for computer simula-
tions.

• annin ar4 driver: Connects ROS to the real robot hardware.

• annin ar4 firmware: Runs the basic code that controls the motors and sensors.

• annin ar4 moveit config: Plans robot movements and shows them in 3D models.

• annin ar4 gazebo: Simulates how the robot moves in a virtual environment.

The development started in the simulation environment to test everything before using the real robot. A
custom ROS program sends target positions to the robot, and the MoveIt 2 planner figures out how to
move the robotic arm safely to these positions. After testing in simulation, this setup will be transferred
to control the real hardware.

The simulation tools, MoveIt 2, Gazebo, and Rviz, help make sure the robot works as expected:

• MoveIt 2 calculates how the robot should move its joints to reach specific points in space.

• Gazebo simulates real-world physics like gravity, friction, and obstacles.

• Rviz provides an easy-to-understand visual display of how the robot will move.
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Unfortunately, establishing a reliable connection between ROS and the robotic hardware via serial
communication proved to be problematic during testing. As a result, the robotic arm could not be directly
controlled through the ROS interface as originally intended. To proceed with physical testing, manual
control was instead carried out using the graphical user interface (GUI) provided by the manufacturer.
This GUI works in conjunction with the default control software developed by Annin Robotics, which
was flashed onto the robot to enable basic motion and functionality.

5.2.2 Mobile App IOS Application Design

The iOS mobile application plays a critical role in the system by capturing and transmitting high-quality
images while the robotic arm moves to various positions. The app works alongside the ROS-based robotic
system and backend server to ensure that image capture is synchronized with the robot’s movements. A
high-level overview of the system architecture is shown in Figure D.4, with technical details available in
Appendix D.

The system is made up of four main parts:

• Coordinator server: Manages communication and keeps track of the state of the robot and mobile
app.

• iOS application: Captures RGB images and depth maps, and sends them to the server.

• ROS2 robotic system: Controls the robot’s movements and provides real-time position updates.

• Database and storage: Saves image files and keeps records of each capture session.

The iOS app uses Apple’s AVFoundation framework to capture both high-resolution images and depth
data. It operates a capture pipeline that processes images one at a time to manage memory efficiently.
Using a custom queue system, the app ensures images are captured with the correct exposure, focus, and
depth accuracy, without overloading the device’s memory. Captured data is temporarily stored on the
device and then transmitted to the backend server.

Data Transmission Image files can be large, so the app compresses them using JPEG format to
balance quality and size. Depth maps are saved in a 32-bit floating-point format to maintain accuracy
while reducing file size.

For communication, the app uses two methods:

• WebSockets: For fast, real-time commands and updates between the app, robot, and server.

• REST API: For uploading larger data like images and saving capture session details.

This approach ensures reliable communication while keeping the system fast and efficient. The Web-
Socket connection allows the robot and app to stay in sync, while the REST API handles the larger,
slower data uploads.
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System Integration The mobile app uses a WebSocket client to stay connected with the server and
Apple’s URLSession for uploading images. It is designed to handle network problems by retrying failed
uploads and making sure no data is lost if there are interruptions.

On the robot’s side, a ROS2 node uses WebSockets to receive movement commands and send updates,
keeping the robot’s movements aligned with the image capture process.

Infrastructure and Scalability As the system grows, it needs to handle more robots and larger
amounts of image data. To manage this, the backend uses a combination of local computing and cloud
services:

• Amazon EC2: Runs the WebSocket server and API.

• Amazon S3: Stores images and depth data.

• Amazon RDS (PostgreSQL): Keeps records of each scan.

For early testing, the server is run locally to avoid cloud costs. However, as the system scales, cloud-based
solutions with load balancing and multiple server instances will be used to handle many robots at once.

5.2.3 Tolerancing Computer Vision Geometry Calculations

The computer vision system is designed to improve the accuracy of image capture by correcting for small
mechanical errors in the robot’s assembly and movement. Rather than relying only on perfectly built
mechanical parts, the system uses advanced image processing to measure and correct the robot’s position
and orientation in real time. An example of the setup, showing the camera mount and visual markers, is
shown in Figure 13.
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Figure 13. Image captured by the iPhone, showing the 3D-printed mount and ArUco marker
placement.

Initial depth maps from the iPhone camera were not accurate enough for reliable use (Figure 14). To
improve this, the team added ArUco markers — simple printed patterns that help the camera precisely
understand its position in space. By processing images of these markers, the system generates much
clearer and more accurate depth maps (Figure 15).
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Figure 14. Initial depth map captured by
the iPhone (insufficient quality).

Figure 15. Refined depth map generated
via computer vision techniques.

The computer vision software works by taking pairs of RGB images and depth maps, cleaning up any
noise, and reconstructing an accurate 3D model of the scene. This process allows the system to:

• Measure and correct any small shifts or rotations of the camera.

• Compensate for mechanical issues like gear backlash and assembly misalignment.

• Maintain precise control without needing expensive high-precision mechanical parts.

Instead of relying on expensive components, the team chose to use software to manage mechanical
tolerances. The camera’s position relative to the sample slide is calculated directly from the images,
independent of mechanical imperfections. With over 12 million pixels in the iPhone camera, the system
achieves very high accuracy — potentially at the micron level — making it much more efficient than
manually tuning mechanical parts.

The full source code for the computer vision system is available on GitHub, and a detailed video
walkthrough is provided on Loom. A full analysis of the computer vision system can be found in
Appendix F.
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6 Manufacturing and Cost Analysis

Gantry Frame and Rotary Axis Integration (30 hours)

• Cut stock aluminum extrusions (4040, 2040, 2020 profiles) to length using a miter saw provided
by the client.

• Assemble the base frame and vertical supports with fasteners and brackets.

• Install the HGR20 linear guide rails with precise drilling/tapping for alignment.

• Install the mounting plate, provided by the client, onto the linear rail carriages to serve as the base
for the robotic arm.

• Mount and align the ball screw linear actuator, and integrate the NEMA 23 stepper motor for
carriage motion.

• Mount the rotary axis to the gantry.

• Install two NEMA 23 motors and couple them to the rotary axis.

• Wire and test the rotary motion for smooth rotation in two degrees of freedom.

Robotic Arm (100 hours)

• Follow official AR4-MK3 assembly instructions [1] using kits: Aluminum Parts, Hardware,
Electrical, and Stepper Motor kits.

• Build each joint (base to wrist), install motors, route and connect wiring, and perform full
mechanical and electrical integration.

• Calibrate joints, ensuring smooth operation across all axes.

Vacuum Gripper Assembly (2 hours)

• Mount the gripper bracket to the robot’s wrist.

• Install the vacuum pump and route air tubing along the robot’s structure.

• Wire the pump and solenoid valve to the control system, then test suction and release functionality.

Note that no manufacturing costs were determined as the process was completed using client-sponsored
tools.

Table 5 shows the complete cost breakdown for the entire assembly including the robotic arm, gantry,
and gripper subsystems.
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Table 5: Detailed Cost Analysis for the Complete Assembly

Part # Part Name Model No. Unit Price (CAD) QTY Total Cost (CAD) Source

Gripper Design: Vacuum Suction

VAC-000 Complete Vacuum Assembly 5083N145 77.31 1 77.31 Vacuum Assembly Link

VAC-001 Vacuum Pad - - 1 - -

VAC-002 Vacuum Pad Attachment Piece - - 1 - -

VAC-003 Base Plate for Attachment - - 1 - -

VAC-004 M6 x 1mm Attachment Piece - - 1 - -

VAC-005 6mm Barbed Side Air Connection - - 1 - -

VAC-006 Air Tubes Set B07T14L3CG 17.33 1 17.33 Air Tubes Link

VAC-007 Vaccuum Pump B09KBJS36B 233.99 1 233.99 Vacuum Pump Link

Subtotal 328.63

Main Gantry Structure

GS-001 4040 Aluminum Extrusion ADV21124040 70.00 per 2 m 4 279.99 4040 Extrusion Link

GS-002 2040 Aluminum Extrusion V2040 47.40 per 2 m 5 236.99 2040 Extrusion Link

GS-003 2040 Aluminum Extrusion V2040 24.00 per 1 m 5 119.99 2040 Extrusion Link

GS-004 2020 Aluminum Extrusion B09KL9NDRR 12.75 per 0.8 m 4 50.99 2020 Extrusion Link

GS-005 HGR20 Rail Kit B09N6ZB7NS 480.69 1 480.69 Rail Kit Link

GS-006 Rotary Axis Assembly 4th 5th Axis 473.99 1 473.99 Rotary Axis Link

GS-007 Aluminum Brackets B0CLXVFTWS 1.12 48 53.98 Bracket Link

GS-008 Aluminum Extrusion Fasteners B0B289CSZH 2.69 8 21.59 Fastener Link

https://www.mcmaster.com/5083N145/
https://www.amazon.ca/uxcell-Pneumatic-Polyurethane-Compressor-Transparent/dp/B07T14L3CG?crid=3VLPU3HS2QPJS&dib=eyJ2IjoiMSJ9.Zk3f3bXnQhVt4RPVZJAN8K8xds8eiBW2-Cq9mMf6Z-6BAqs-5aZen6_uArgMbQ0ZBX30QdwwHNnIGc6vlxbhGFWddqPiuIFCwgOdiqDOSFxGqVc-nah0jwXV2PuHG4cF41lgjgR3r9eMCwQHki-xiLLFxxLgN4b8y69GyecGLKay8bVQ8nYzdduESRCfrqDhGkN5vH3cS1HFUs7_ajAN00xh4huT5MmWq2tmNbTVUgZMZgsxSU8IHD5u2bVKO6bHDXHmtcYRPIzvWwfxFjRc81Kr7hyaCpwB1z4z-ABZyQ4g18qkh-mUXp9_fxiGfycCxwFPjnhYngoj34dyx3NmOYugS5UoP9Tk2pfu0QQAtD3ryZTUhX6HG-EaCCrdBOyZ0_F8AeJvV-XKYJoHaVgxWsVQ24lMmNwxpuK-heQ34Ere-FBMeWaaL2U2X3tgECBw.VYSrBKTFIB6IQ2cBfdtj1VnaocOGLuMVkszSdxCH44w&dib_tag=se&keywords=1%2F4%22+ID+pneumatic+air+tubing&qid=1743366808&sprefix=1%2F4+id+pneumatic+air+tubing%2Caps%2C270&sr=8-6
https://www.amazon.ca/dp/B09KBJS36B?ref=cm_sw_r_cso_cp_apin_dp_HJSX9VX1AMVFMWM9C1GP&ref_=cm_sw_r_cso_cp_apin_dp_HJSX9VX1AMVFMWM9C1GP&social_share=cm_sw_r_cso_cp_apin_dp_HJSX9VX1AMVFMWM9C1GP&th=1
https://www.amazon.ca/Aluminum-Extrusion-European-Standard-Anodized/dp/B09MYLVV4Y?th=1
https://www.amazon.ca/Aluminum-Extrusion-European-Standard-Anodized/dp/B0BJK95T2Z?crid=22V7V01P4CXOA&dib=eyJ2IjoiMSJ9.NsKDz2SE_bTKOYRWOvVijNK2PL0yYWi2sh6oBLU_Sq5aYnq6RMrydsGjo_OGozAct2Tdve6Lpri7i5-kSSZyeqG5gm8QKG9onhOLtmllXJ7T--r-y0lDs6S-5zLOesmI9lVNeXlNsH5mDm1olKEg3aBM6M3bZr41b4zvWF6xYwkNdMWieSvpohGQ0TCC3ckgFzch5rK7ZXsIrEfXz6hIQMd4rKBxXgaOaZJJdz_h6dIf0jb4XgX1wEUFwI6ra64sYv19zX5yaEiZvZqv2gsmNsrI-uIt8JNkSm4wqh--cI4.SpE7aheiLukbcjdI2lGTLbp-Db9q6nWAwo2r36dspPE&dib_tag=se&keywords=2040%2BAluminum%2BExtrusion&qid=1744229565&s=industrial&sprefix=2040%2Baluminum%2Bextrusion%2Cindustrial%2C202&sr=1-4&th=1
https://www.amazon.ca/Aluminum-Extrusion-European-Standard-Anodized/dp/B0BJK95T2Z?crid=22V7V01P4CXOA&dib=eyJ2IjoiMSJ9.NsKDz2SE_bTKOYRWOvVijNK2PL0yYWi2sh6oBLU_Sq5aYnq6RMrydsGjo_OGozAct2Tdve6Lpri7i5-kSSZyeqG5gm8QKG9onhOLtmllXJ7T--r-y0lDs6S-5zLOesmI9lVNeXlNsH5mDm1olKEg3aBM6M3bZr41b4zvWF6xYwkNdMWieSvpohGQ0TCC3ckgFzch5rK7ZXsIrEfXz6hIQMd4rKBxXgaOaZJJdz_h6dIf0jb4XgX1wEUFwI6ra64sYv19zX5yaEiZvZqv2gsmNsrI-uIt8JNkSm4wqh--cI4.SpE7aheiLukbcjdI2lGTLbp-Db9q6nWAwo2r36dspPE&dib_tag=se&keywords=2040%2BAluminum%2BExtrusion&qid=1744229565&s=industrial&sprefix=2040%2Baluminum%2Bextrusion%2Cindustrial%2C202&sr=1-4&th=1
https://www.amazon.ca/European-Standard-Anodized-Aluminum-Extrusion/dp/B09KL9NDRR?crid=1GPGXYDD7W2Z6&dib=eyJ2IjoiMSJ9.LZn4QPFzcFn5sT5yNZDu0w._Wg44UZ3P0E1ZcD_YFCMrbangLz_fMbXfHgf5inXeF8&dib_tag=se&keywords=B09KL9NDRR&qid=1744229767&s=industrial&sprefix=b09kl9ndrr%2Cindustrial%2C174&sr=1-1&th=1
https://www.amazon.ca/CNCMANS-HGH20CA-Bearing-Precision-Automated/dp/B09N6ZB7NS?crid=867BKLHB79WN&dib=eyJ2IjoiMSJ9.zPvI-7LSufb_E9efdWsnNw.JNIpdB_z9CuKAqQN7iTCiRrb2tCX6YW3bJBwhMGq6YU&dib_tag=se&keywords=B09N6ZB7NS&qid=1744229814&s=industrial&sprefix=b09n6zb7ns%2Cindustrial%2C104&sr=1-1&th=1
https://www.aliexpress.com/item/1005005787608534.html?spm=a2g0o.productlist.main.19.759e518aOpVYoS&algo_pvid=ae217830-75d9-46e2-93b3-199399eb0273&algo_exp_id=ae217830-75d9-46e2-93b3-199399eb0273-18&pdp_ext_f=%7B%22order%22%3A%22-1%22%2C%22eval%22%3A%221%22%7D&pdp_npi=4%40dis%21CAD%21764.50%21473.99%21%21%213788.40%212348.81%21%402101ead817414611062231958e0873%2112000035066823475%21sea%21CA%210%21ABX&curPageLogUid=lN7b6fVqghSV&utparam-url=scene%3Asearch%7Cquery_from%3A
https://www.amazon.ca/Seekliny-Aluminum-Extrusion-Hardware-Accessories/dp/B0CLXVFTWS?crid=2YOES2AA6U99A&dib=eyJ2IjoiMSJ9.iEoR5BV2jrC3xfxRwMvcjg.otUbmSmHWjH3s4VOZLBhb4vMQB3izJB-8hOXi18akOs&dib_tag=se&keywords=B0CLXVFTWS&qid=1744229872&s=industrial&sprefix=b0clxvftws%2Cindustrial%2C103&sr=1-1&th=1
https://www.amazon.ca/2020-Aluminum-Extrusion-Connector-Included/dp/B0B289CSZH?crid=1Z2VKMVJTG966&dib=eyJ2IjoiMSJ9.TyN0TInQeEiFQ1DXYtv5ng.C52OtPHOTj1LMYGs_pn1G2eDm9MzTfdKkR8z3MuC4js&dib_tag=se&keywords=B0B289CSZH&qid=1744229913&s=industrial&sprefix=b0clxvftws%2Cindustrial%2C101&sr=1-1
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GS-009 NEMA 23 Stepper Motor 23HS45-4204D-E1000 36.02 3 108.06 NEMA Motor Link

Subtotal 1,826.27

Ball Screw Linear Actuator

BS-001 Ball Screw Linear Actuator SK-KGX150 684.16 1 684.16 Ball Screw Link

BS-002 NEMA 23 Stepper Motor 23HS45-4204D-E1000 36.02 1 36.02 NEMA Motor Link

Subtotal 720.18

AR4-MK3 Robotic Arm

AR4-001 AR4 MK3 Aluminum Parts Kit - 860.56 1 860.56 AR4 Aluminum Parts Kit Link

AR4-002 AR4 MK3 Hardware Kit - 558.86 1 558.86 AR4 Hardware Kit Link

AR4-003 AR4 MK3 Primary Electrical Parts Kit - 300.27 1 300.27 AR4 Electrical Kit Link

AR4-004 AR4 MK3 Stepper Motor Kit AR4-MK3 1048.50 1 1048.50 AR4 Stepper Motor Kit Link

Subtotal 2,768.19

Grand Total 5,643.27

https://www.omc-stepperonline.com/nema-23-closed-loop-stepper-motor-3-0nm-424oz-in-encoder-1000ppr-4000cpr-23hs45-4204d-e1000
https://www.aliexpress.com/item/1005008337723764.html?spm=a2g0o.productlist.main.16.4aff6a0c7dIPEO&aem_p4p_detail=202503081109504606793160808200001350485&algo_pvid=fba78b40-c542-4499-93ae-9966c94f2bad&algo_exp_id=fba78b40-c542-4499-93ae-9966c94f2bad-15&pdp_ext_f=%7B%22order%22%3A%223%22%2C%22eval%22%3A%221%22%7D&pdp_npi=4%40dis%21CAD%21360.27%21278.71%21%21%211785.27%211381.09%21%402101c71a17414609906591341e45e5%2112000044649154073%21sea%21CA%210%21ABX&curPageLogUid=cDxlgwBAyGTI&utparam-url=scen
https://www.omc-stepperonline.com/nema-23-closed-loop-stepper-motor-3-0nm-424oz-in-encoder-1000ppr-4000cpr-23hs45-4204d-e1000
https://www.anninrobotics.com/product-page/ar2-aluminum-parts-kit
https://www.anninrobotics.com/product-page/ar2-hardware-kit
https://www.anninrobotics.com/product-page/ar4-primary-electrical-parts-kit
https://www.omc-stepperonline.com/upgraded-ar4-robot-complete-electric-package-ar4-mk3-stepper-motor-driver-and-power-supply-ar4-mk3
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7 Product Feasibility Analysis

While this report in its entirety is unlikely to be used directly by the client, the assembly and operation
instructions included remain highly valuable for future implementation and support. The design itself is
fully automated and modular, requiring minimal manual intervention once assembled. This aligns directly
with the project’s original goal—to create a scalable, easy-to-operate system that reduces reliance on
specialized labour. The result is a highly usable and client-ready product, even if the full report primarily
serves documentation and evaluation purposes.

8 Design Compliance Matrix

The Design Compliance matrix shown below showcases all the major design considerations and decisions
that are required for this project. The importance values for each specification are explained in Table A.1
in Appendix A. These values were determined based on several factors, with primary emphasis on the
client’s expectations, the team’s resource allocation, and compatibility with design components. For the
finalized design and prototype, all criteria with a value of 5 or 4 have been met in order for the prototype
to be functional. In terms of the client, 5 to 4 were must haves and 3 to 1 were considered nice to have.

Specific safety and regulatory requirements are discussed in the compliance matrix along with compli-
ance. Further description of these requirements can be found in Appendix I.

Throughout the design phase and, importantly, the prototype building phase, it became vitally important
to distinguish these ”Needs to have” from ”Nice to haves.” Thought and analysis had to be performed
at client meetings and design meetings as to what would be critical to the project’s main mission. After
each discussion client approval also had to be obtained to ensure continuing satisfaction with the progress
and design direction. Below in Table 6 is our client meeting checklist along with approval confirmation.

Table 6: Client Approval Checklist

Date Client Approval Description

2025/02/01 Dr. Todd McMullen Phase 1 Overview and preliminary design ob-
jectives discussed.

2025/02/24 Dr. Todd McMullen Prototype development update and design
choices finalized and confirmed.

2025/03/05 Dr. Todd McMullen Phase 2 Overview and prototype progress re-
port.

2025/04/01 Dr. Todd McMullen Phase 3 Overview, Prototype completion and
showcase, minor client alterations.
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Item Specification Design 

Control 
Comments Importance 

(1-5) 
1-low   5-

high 

End of 
Phase 2 

End of 
Phase 3 

Design Compliance 

Project 
Management 

       

1.1 Schedule Dr. Tetsu All deliverables submitted on time in 
accordance the course schedule. 

Deadline for Phase 3 Report is April. 9 

5 5 
 

5 Deadlines were all met 

1.2 Manufacturability Client Manufacturing will be completed using 
various methods to achieve the lowest 

cost possible. Most likely will use various 
OEM components to make this possible.  

4 4 4 All manufacturing and 
assembly were done in house 

including installation of 
outsourced components 

1.3 Production Volume Client Single prototype is to be designed and 
manufactured as proof of concept 

3 4 5 One functioning prototype 
was completed 

Physical 
Dimension 
and Design 

       

2.1 Platform Size Client Platform that’s stable and can hold the 
robotic arm and controller mechanisms. 
Max floor footprint of   250cm x 85cm and 

comfortable work height of 80cm 

4 3 4 Final dimensions: 
LxWxH 

2224mmx820mmx1230mm 

2.2 Load limit Client A Load limits of 2 kg must be met for the 
chosen robotic arm system to ensure 

gripper mechanism and capture device 
are supported adequately. 

4 5 5 Maximum Load limits 
calculated was : 

1.9 kg 
It fell just short of our 
specification but still 

functions just with a slightly 
reduced factor of safety.  

2.3 Material / Colour Team Materials will largely be comprised of 
stainless steel and aluminum for 

durability and ease of cleaning 

3 4 3 Majority of materials was 
comprised of aluminum and 

stainless steel 
2.4 User Interface Team User interface will be designed through 

an IOS/Android App for end user access 
for image capture and data transmission 

3 4 4 App was completed and 
passed the testing phase.  



        
Functional        

3.1 Control Mechanism Client Control of capture device will be 
facilitated though open source software 

in a local or cloud server. Via a 
microcontroller control of sensors is 
needed to execute desired functions. 

4 4 4 Control of capture device was 
integrated into the IOS 

application and passed the 
testing phase.  

3.2 Drive Mechanism Client Drive mechanisms must be powered 
and compatible with user controlled 

and control mechanism. 

3 4 5 A ball screw linear actuator 
was selected along with 

stepper motors 
3.3 Reachable Workspace Client Robotic arm with gripper should reach 

all points inside a 250cm x 85cm x 50 
cm envelope. 

3 3 3 Robotic arm assembly with 
the drive mechanism 
achieved 4 degrees of 

freedom allowing it to reach 
desired envelope.  

3.4 Robotic Arm 
Integration 

Team Integration capability and simplicity with 
the chosen control software ROS2 

5 5 5 ROS2 integrations was 
completed and functioning  

3.5 Gripper Mechanism Team Needs to support and securely hold 
various phones and tablets max size: 

200xmm250mm 
Min size: 70mm*130mm 

4 4 5 Vacuum Gripper mechanism 
was designed, manufactured, 
and met or exceeded design 

requirements.   
3.6 Gripper Inertia Team Gripper design must be constructed in a 

way to reduce or minimize the robotic 
arms inertia during operation. This is 

based on total mass of the gripper 
system.  

4 3 3 Vacuum Gripper had the 
lowest weight total compared 
to all other considered gripper 

mechanisms  

3.7 Computer vision 
implementation 

Team Computer vision tracking using ArUco 
squares  and matrix calculation. 

Precision must be high enough to 
discern visible changes in standard 

blood/urine test slides.  

5 4 5 Computer vision software and 
tracking systems are fully 

operations, integrated and 
performing as expected.  

3.8 Operating conditions Client Intended operation range of 10-40 C 3 3 3 Operation was designed for 20 
C 

3.9 Life-cycle Client Components should have over a 10-year 
life cycle 

3 3 3 Quality parts were sourced to 
ensure life-cycle 

requirements can be met.  



3.10 Linear actuator load 
capacity 

Client Linear actuator system has to have 
adequate power to move loads along 

the gantry system.  

4 4 5 Torque of 3.0 Nm was 
achieved with the selected 

system and passed our load 
testing. Maximum load 

requirement possible being 
0.155 Nm under extreme 

operating conditions 
3.11 Linear actuator 

Precision 
Client Linear actuator system must have 

precise movement control as to not 
interfere with photo capture calibration 

system.  

5 4 4 Imprecisions in the movement 
control systems was fixed 

using post processing of the 
capture system.  

3.12 Linear actuator Speed Client The linear actuator system must be 
capable of achieving a speed of at least 

0.1 m/s to alter the position of the 
robotic arm during data generation. 

2 2 2 Movement speed of 0.3m/s 
was achieved. 

Safety        
4.1 Physical Guards CSA See section 9.2.2.4 in Appendix J 5 5 5 Physical Guards are being 

installed currently to prevent 
physical interaction with 

moving parts during 
operation.   

4.2 Power Isolation OHS See section 212(1)  in Appendix J 5 5 5 Power toggle switches and 
fuses are installed along with 

a emergency power cutoff 
button easily accessible.  

4.3 Speed Limits CSA See section 9.2.2.6  in Appendix J 5 5 5 Speed limits of moving 
components have been 

limited using the onboard ROS 
software integration.  

4.4 Secure Installation OHS See section 209.1(2)  in Appendix J 5 5 5 Platform has been securely 
fastened to the floor via the 

gantry system using bolts and 
rubber feet.  

MISC.        
5.1 Budget Client Allocations for components, assembly, 

software, and development hours. Total 
4 4 5 Total project cost of 56,250$ 

which was under our project 
budget even with a longer than 



 

project development and prototype cost 
must be under 60,000$ 

expected coding and 
assembly time.  

5.2 Testing Team Testing must be completed for both 
physical components and software/app 

controllers to ensure client goals are 
met.  

4 4 5 Testing was successfully 
completed and protype is 

functioning as expected within 
our desired operating 

conditions. 
5.3 Maintenance Team Components should be easily 

serviceable without the need for 
advanced tools or training.  

1 2 2 All parts have been serviced, 
and a maintenance schedule 

has been created.  
5.4 Environment Team Components should be sourced to have 

minimal impact to the environment 
1 2 2 Majority of steel and 

aluminum components 
making up the majority of the 
prototype can be recycled or 

reused.   



Phase III Report

9 Project Management

Fabri Sciences Inc. has consistently tracked engineering labour hours throughout all phases of the robotic
system development. Figures 16 and 17 provide comparisons between initial estimates and actual labour
expenditures. Detailed scheduling information and updated Gantt charts for Phase III are presented in
Appendix K.

Figure 16. Breakdown of total engineering labour hours per phase.

The Phase III labour hours significantly exceeded the initial estimate of 541 hours, reaching a total of 625
hours, representing an 84-hour increase (approximately 16% variance). This increase was primarily due
to unforeseen challenges in software development and robotic system assembly. The most substantial
factor was the discovery of critical faults in the robotic arm source code provided by Annin Robotics,
necessitating a fully custom software solution. Connor Poveledo led the extensive development and
debugging of this new software, significantly contributing to the additional hours.

Furthermore, iterative adjustments and refinements during physical prototype assembly required ad-
ditional time beyond initial expectations. Integration testing, mechanical troubleshooting, and design
revisions also contributed notably to the expanded labour commitment.
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Figure 17. Breakdown of total engineering labour costs per phase.

As a direct consequence of these additional hours, the manpower costs also rose from the original Phase
III estimate of $48,690 to a final total of $56,250. These adjustments accurately reflect the extensive
efforts required to overcome the unforeseen challenges encountered in Phase III.
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10 Conclusion

The robotic system developed by Fabri Sciences Inc. successfully meets and surpasses the client’s
specifications, demonstrating exceptional capability as a fully automated, high-precision robotic solution.
Extensive testing of our prototype confirmed that the data produced by the system achieves accuracy
within microns, ensuring clinical-grade dataset reproducibility essential for reliable medical diagnostics.
Importantly, the total manufacturing cost was effectively managed, with the final prototype constructed
for under $6,000 CAD, significantly below the original budget, and with inherent scalability to expand
operations seamlessly.

In practical terms, this design has dramatically improved productivity by replacing manual processes—previously
limited to two slides per day by a full-time worker—with automation capable of completing over a
decade’s worth of manual workload within half a day. This directly translates to eliminating annual
labour expenses of approximately $75,000, generating long-term savings exceeding $700,000 and cre-
ating substantial economic and operational efficiencies. The integration of advanced computer vision,
custom-developed robotic control software, and reliable ROS2-driven automation further ensures the
system’s precision, adaptability, and robustness. Ultimately, this innovative and scalable design posi-
tions Kondor Devices Inc. to substantially advance their diagnostic capabilities, providing new avenues
for rapid, accurate, and cost-effective medical analysis.

To emphasize the success and feasibility of this system, Figure 18 showcases the completed real-life
prototype in operation—highlighting that this is not just a theoretical concept, but a fully realized,
functioning solution.

Figure 18. Final assembled prototype of the automated robotic dataset generation system.
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Appendix A: Updated Design Specification Matrix

The specification matrix shown in Table B.1 showcases all the major design considerations and decisions
that are required for this project. The importance values for each specification are explained in Table
A.1. These values were determined based on several factors, with primary emphasis on the client’s
expectations, the team’s resource allocation, and compatibility with design components. For the finalized
design and prototype, all criteria with a value of 5 or 4 has to be met in order for the prototype to be
functional. In terms of the client, 5 to 4 were must haves and 3 to 1 were considered nice to have.

Modifications to the matrix are displayed in the changes column, and the importance values have been
updated from phase 2.

Table A.1: Design Specifications Criteria Chart

Importance Value Criteria Description

5 High Priority Failure to follow renders the project infeasible

4 Moderate Priority Significant impact on performance and is key to
project success

3 Low Priority Improves performance but is not vital for the
core function

2 Optional Minimal impact adding non-essential enhance-
ments

1 Unnecessary Negligible impact on project outcome

See updated matrix on the following pages.
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Item Specification Design 
Control 

Comments Importance 
(1-5) 

1-low   5-
high 

Changes 

Project Management      
1.1 Schedule Dr. Tetsu All deliverables submitted on time in 

accordance the course schedule. Deadline for 
Phase 1 Report is Feb. 9 

5  

1.2 Manufacturability Client Manufacturing will be completed using various 
methods to achieve the lowest cost possible. 
Most likely will use various OEM components 

to make this possible.  

4  

1.3 Production Volume Client Single prototype is to be designed and 
manufactured as proof of concept 

5 
 

 

Physical Dimension 
and Design 

     

2.1 Platform Size Client Platform that’s stable and can hold the robotic 
arm and controller mechanisms. Max floor 

footprint of   250cm x 85cm and comfortable 
work height of 80cm 

4  

2.2 Load limit Client A Load limits of 2 kg must be met for the 
chosen robotic arm system to ensure gripper 

mechanism and capture device are supported 
adequately.  

5 Added clarity to design criteria.  

2.3 Material / Colour Team Materials will largely be comprised of stainless 
steel and aluminum for durability and ease of 

cleaning 

3  

2.4 User Interface Team User interface will be designed through an 
IOS/Android App for end user access for image 

capture and data transmission 

4 . 

Functional      
3.1 Control Mechanism Client Control of capture device will be facilitated 

though open source software in a local or 
cloud server. Via a microcontroller control of 

sensors is needed to execute desired 
functions. 

4  



3.2 Drive Mechanism Client Drive mechanisms must be powered and 
compatible with user controlled and control 

mechanism. 

5  

3.3 Reachable Workspace Client Robotic arm with gripper should reach all 
points inside a 250cm x 85cm x 50 cm 

envelope. 

3  

3.4 Robotic Arm Integration Team Integration capability and simplicity with the 
chosen control software ROS2 

5  

3.5 Gripper Mechanism Team Needs to support and securely hold various 
phones and tablets max size: 200xmm250mm 

Min size: 70mm*130mm 

5  

3.6 Gripper Inertia Team Gripper design must meet functional 
requirements but also minimize total weight as 

much as possible to reduce the effect on the 
robotic arms inertia during operation.  

3 Added clarity to design criteria.  

3.7 Computer vision 
implementation 

Team Computer vision tracking using ArUco squares  
and matrix calculation. Precision must be high 
enough to discern visible changes in standard 

blood/urine test slides.  

5  

3.8 Operating conditions Client Intended operation range of 10-40 C 3  
3.9 Life-cycle Client Components should have over a 10-year life 

cycle 
3  

3.10 Linear actuator load 
capacity 

Client Linear actuator system has to have adequate 
power to move loads along the gantry system.  

5  

3.11 Linear actuator Precision Client Linear actuator system must have precise 
movement control as to not interfere with 

photo capture calibration system.  

4  

3.12 Linear actuator Speed Client The linear actuator system must be capable of 
achieving a speed of at least 0.1 m/s to alter 
the position of the robotic arm during data 

generation 

2  

Safety      
4.1 Physical Guards CSA See section 9.2.2.4 of Table 1 5  
4.2 Power Isolation OHS See section 212(1) of Table 1 5  
4.3 Speed Limits CSA See section 9.2.2.6 of Tabe 1 5  
4.4 Secure Installation OHS See section 209.1(2) of Table 1 5  

MISC.      



 

5.1 Budget Client Allocations for components, assembly, 
software, and development hours. Total 

project development and prototype cost must 
be under 60,000$ 

4  

5.2 Testing Team Testing must be completed for both physical 
components and software/app controllers to 

ensure client goals are met.  

4  

5.3 Maintenance Team Components should be easily serviceable 
without the need for advanced tools or 

training.  

2  

5.4 Environment Team Components should be sourced to have 
minimal impact to the environment with 

sustainability in mind 

2 Added clarity to design criteria. 
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Appendix B: Detailed Calculations and Coding

B.1 Calculation of Maximum Weight Holdable by the Vacuum Pad

Name and Date

Calculation done by Wesley Eze, on 2025-03-06.

Objective

To determine the maximum holding force of the vacuum pad using the pressure differential and the
effective contact area.

Assumptions

• The calculation assumes ideal conditions with a perfect seal.

• The entire pad surface is in uniform contact with the load.

• Material deformation and other real-world inefficiencies are ignored in the theoretical computation.

Knowns

• Vacuum level: 24 in Hg.

• Conversion factor: 29.92 in Hg = 101325 Pa.

• Pad diameter: 30 mm (therefore, radius 𝑟 = 15 mm = 0.015 m).

• Vacuum pump specifications: Ultimate vacuum of 2 × 10−2 Pa and a maximum flow rate of 9.6
CFM.

Analysis

The holding force 𝐹 is given by:
𝐹 = Δ𝑃 × 𝐴

where:

• Δ𝑃 is the pressure differential,

• 𝐴 is the effective contact area of the pad.

Step 1: Pressure Differential The vacuum level is given as 24 in Hg. Converting this to Pascals:

Δ𝑃 = 24 in Hg ×
(

101325 Pa
29.92 in Hg

)
≈ 81273 Pa
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Step 2: Contact Area Calculation The pad is circular with a diameter 𝐷 = 30 mm. The radius is:

𝑟 =
𝐷

2
=

30 mm
2

= 15 mm = 0.015 m

Thus, the area is:
𝐴 = 𝜋𝑟2 = 𝜋(0.015 m)2 ≈ 7.07 × 10−4 m2

Step 3: Theoretical Maximum Force Using the computed values, the force due to the vacuum is:

𝐹 = Δ𝑃 × 𝐴 ≈ 81273 Pa × 7.07 × 10−4 m2 ≈ 57.45 N

Step 4: Conversion to Pounds Converting the force from Newtons to pounds (using 1 lb ≈
4.44822 N):

𝐹lbs =
57.45 N
4.44822

≈ 12.92 lbs

Conclusion

The theoretical calculation shows that the vacuum pad could hold approximately 12.92 lbs under ideal
conditions. However, the manufacturer’s rating of 2.82 lbs at 24 in Hg accounts for several real-world
factors:

• Imperfect sealing between the pad and the surface, which can lead to air leakage.

• Material deformation and inherent structural limitations of the pad reducing the effective holding
force.

• Safety and design factors that necessitate a lower rated capacity.

Furthermore, even though the vacuum pump can generate an ultimate vacuum of 2×10−2 Pa and operates
at a maximum flow rate of 9.6 CFM, the overall system performance is ultimately governed by the quality
of the effective seal and the structural limitations of the pad itself.
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B.2 Forward and Inverse Kinematics Calculations

The following appendix provides a detailed explanation of the forward and inverse kinematics calculations
for the Annin AR4 robotic arm [5]. The Annin AR4 robotic arm can be modeled as a 6-degree-of-freedom
(6-DOF) manipulator, consisting of six revolute joints arranged as follows:

Figure B.1. Annin AR4-MK3 robotic arm with the coordinate frames

B.2.1 Forward Kinematics

Name and Date

Forward kinematics calculations performed by Quang Minh Luu on February 25, 2025.

Objective

To determine the forward kinematics of the Annin AR4 robotic arm using the Denavit-Hartenberg (D-
H) method. This involves deriving the transformation matrices for each joint and multiplying them
sequentially to obtain the final end-effector coordinate system, which provides both the position and
orientation.

Assumptions

• The D-H parameter conventions are strictly followed.

• The coordinate frames are defined as per the standard D-H method.

• Joint movements are ideal and free from mechanical errors or slack.

• The provided D-H parameters and joint configurations accurately represent the Annin AR4-MK3
specifications.
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Knowns

• D-H Parameters: As summarized in Table B.2:

Table B.2: Summary Table of Annin AR4-MK3 D-H Parameters

Joint 𝜃 (rads) 𝛼 (rads) Offset 𝑑 (mm) Linkage length 𝑎 (mm)
1 0.00 -1.57 169.77 64.20
2 -1.57 0.00 0.00 305.00
3 3.14 1.57 0.00 0.00
4 0.00 -1.57 222.63 0.00
5 1.57 1.57 0.00 0.00
6 0.00 0.00 41.00 0.00

• D-H Transformation Matrix: The general D-H transformation matrix is illustrated in Figure B.2:

Figure B.2. The Denavit-Hartenberg transformation matrix where 𝑖 represents the joint number
(0 to 6)

• Transformation Matrices: The individual transformation matrices derived from the joint con-
figurations are provided.

Analysis

The forward kinematics is computed by sequentially multiplying the transformation matrices:

𝑇end-effector = 𝑇0
1 𝑇1

2 𝑇2
3 𝑇3

4 𝑇4
5 𝑇5

6

with the final transformation matrix expressed as:

𝑇end-effector =



𝑟11 𝑟12 𝑟13 𝑥

𝑟21 𝑟22 𝑟23 𝑦

𝑟31 𝑟32 𝑟33 𝑧

0 0 0 1


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The individual transformation matrices are:

𝑇0
1 =



cos(0) − sin(0) 0 64.20

sin(0) cos(−𝜋/2) cos(0) cos(𝜋/2) − sin(−𝜋/2) − sin(−𝜋/2) ∗ −169.77

sin(0) sin(−𝜋/2) cos(0) sin(−𝜋/2) cos(−𝜋/2) cos(−𝜋/2) ∗ 169.77

0 0 0 1



𝑇0
1 =



1 0 0 64.20

0 0 1 −169.77

0 −1 0 0

0 0 0 1


Similarly, the transformation matrix of the other joint configurations can be found:

𝑇1
2 =



0 1 0 305

−1 0 1 0

0 0 1 0

0 0 0 1


𝑇2

3 =



−1 1 0 0

0 0 −1 0

0 −1 1 0

0 0 0 1


𝑇3

4 =



1 0 0 0

0 0 1 22263

0 −1 0 0

0 0 0 1


𝑇4

5 =



0 −1 0 0

0 0 −1 0

1 0 0 0

0 0 0 1


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𝑇5
6 =



1 0 0 0

0 1 0 0

0 0 1 41

0 0 0 1


Multiplying these matrices yields the end-effector transformation matrix:

𝑇end-effector =



−0.0008 0.0008 −1 327.85

−1 −0.0032 0.0008 −52.83

−0.0032 1 0.0008 −0.36

0 0 0 1


From this, the Cartesian coordinates of the end-effector are:

𝑥

𝑦

𝑧


=


327.85

−52.83

−0.36


And its orientation, expressed in terms of Euler angles, is given by:


𝜙

𝜃

𝜓


=


arctan 2(𝑟32, 𝑟33)

arctan 2(−𝑟31,
√︃
𝑟2

32 + 𝑟2
33)

arctan 2(𝑟21, 𝑟11)


=


𝜋/2

0.0032

−𝜋/2


Conclusion

Using the Denavit-Hartenberg method, the forward kinematics of the Annin AR4 robotic arm have been
successfully derived. The resulting end-effector transformation matrix indicates a position of (𝑥, 𝑦, 𝑧) =
(327.85, −52.83, −0.36) and an orientation (in Euler angles) of (𝜙, 𝜃, 𝜓) = (1.57, 0.0032, −1.572).
These outcomes provide the necessary mapping from the base frame to the end-effector frame for the
given joint configurations.

43



Phase III Report

B.2.2 Inverse Kinematics

Name and Date

Inverse Kinematics Calculations, done by Quang Minh Luu on February 25, 2025.

Objective

To solve the inverse kinematics of the Annin AR4 robotic arm using Newton’s method. The aim is to
iteratively adjust the joint angles so that the end-effector reaches a desired target position by minimizing
the error between the computed forward kinematics and the target coordinates.

Assumptions

• The forward kinematics function 𝑓 (𝑟) is continuously differentiable with respect to the joint angle
vector 𝑟.

• The Jacobian matrix 𝐽 =

[
𝜕 𝑓𝑖 (𝑟 )
𝜕𝑟 𝑗

]
can be accurately computed.

• The initial guess for the joint angles is sufficiently close to the true solution to ensure convergence
of the iterative process.

• The transformation matrices and joint linkage dimensions are based on the actual Annin AR4-MK3
specifications.

Knowns

• Forward Kinematics Relation: 𝑓 (𝑟) maps the joint angles 𝑟 to the end-effector coordinates.

• Iterative Update Equation: Using Newton’s method, the joint angles are updated by solving

𝐽 𝑑𝑟 = 𝑊 − 𝑓 (𝑟) and 𝑟 = 𝑟 + 𝑑𝑟,

where 𝐽 is the Jacobian matrix, 𝑑𝑟 is the change in joint angles, and 𝑊 is the target end-effector
coordinate.

• Target Position:

𝑊target =


200

300

500


.
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• Initial Guess for Joint Angles:

𝑟0 =



0.5

−0.5

0.5

0.5

−0.5

0.5


(radians).

• Result of Forward Kinematics on 𝑟0:

𝑓 (𝑟0) =


190

280

480


.

• Error between Target and Current Position:

𝑊 − 𝑓 (𝑟0) =


10

20

20


.

• Jacobian Matrix 𝐽:

𝐽 =



−100 −140 −60 −10 5 0

140 110 80 10 −5 0

50 80 100 20 0 5

0 0 1 1 0 0

1 1 0 0 1 0

0 1 0 0 0 1


.

• Computed Correction:

𝑑𝑟 =



0.4935

−0.2024

0.0130

−0.3260

−0.0771

−0.1881


.
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• Updated Joint Angles:

𝑟new = 𝑟0 + 𝑑𝑟 =



0.9935

−0.7024

0.5130

−0.1740

−0.5771

−0.3119


(radians).

Analysis

The inverse kinematics solution is obtained by iteratively applying Newton’s method:

1. Initial Guess: Start with an initial guess 𝑟0 for the joint angles.

2. Compute Forward Kinematics: Evaluate 𝑓 (𝑟0) to obtain the current end-effector coordinates.

3. Error Calculation: Compute the difference 𝑊 − 𝑓 (𝑟0), which represents the positional error.

4. Jacobian Evaluation: Calculate the Jacobian matrix 𝐽 from 𝑓 (𝑟) using the specified joint linkage
lengths of the ANNIN-AR4-MK3.

5. Solve for 𝑑𝑟: Solve the linear system

𝐽 𝑑𝑟 = 𝑊 − 𝑓 (𝑟)

to determine the correction 𝑑𝑟 for the joint angles.

6. Update: Set 𝑟new = 𝑟0 + 𝑑𝑟 . For the first iteration:

𝑟new =



0.5

−0.5

0.5

0.5

−0.5

0.5


+



0.4935

−0.2024

0.0130

−0.3260

−0.0771

−0.1881


=



0.9935

−0.7024

0.5130

−0.1740

−0.5771

−0.3119


(radians).

7. Iteration: Repeat the process using the updated joint angles until the error between the computed
and target positions is within a predefined tolerance.

Conclusion

The inverse kinematics for the Annin AR4 robotic arm have been successfully approached using Newton’s
method. The iterative process begins with an initial guess and refines the joint angles by solving
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𝐽 𝑑𝑟 = 𝑊 − 𝑓 (𝑟) to reduce the positional error. In the first iteration, the computed adjustment 𝑑𝑟 leads
to a new joint angle vector 𝑟new that moves the end-effector closer to the target position (200, 300, 500).
This method, based on established techniques in robotic kinematics, confirms that the concept design is
both feasible and realistic, aligning theoretical analysis with real-world joint linkage specifications.
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B.3 Required Torque for Linear Actuator

Calculations done by Eric Petersen on March 10, 2025.

Objective: To confirm that the NEMA 23 stepper motor produces sufficient torque (3.0 Nm) to drive the
ball screw linear actuator.

Assumptions:

1. Worst-case scenario: all the weight from the robotic arm and its plate is treated as the force the
linear actuator must overcome.

2. In reality, the linear slide blocks (as shown in Figure B.3) will distribute the weight, reducing the
required torque. However, since we only need to confirm that the worst-case torque is below 3.0
Nm, precise weight distribution is not critical.

Figure B.3. Gantry system analysis for linear actuator torque calculation.

Known Values:

• Mass of AR4-MK3 robotic arm: 12.25 kg [1]

• System efficiency factor: 0.9 [6]

• Pitch of ball screw: 5 mm [3]

• Density of aluminum: 2700 kg/m3

• Gravitational acceleration: 9.81 m/s2
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Analysis:

First, estimate the mass of the aluminum plate (822 mm × 380 mm × 6.35 mm):

𝑉 = 𝑙 × 𝑤 × ℎ = 0.822 m × 0.38 m × 0.00635 m = 0.001984 m3

𝑚plate = 𝜌 ×𝑉 = 2700
kg
m3 × 0.001984 m3 = 5.36 kg

Next, combine the mass of the robotic arm and the aluminum plate:

𝑚combined = 12.25 kg + 5.36 kg = 17.61 kg

Calculate the gravitational force:

𝐹 = 𝑚combined × 𝑔 = 17.61 kg × 9.81
m
s2 = 172.79 N

Apply the force to the torque formula for a ball screw linear actuator [6]:

𝑇 =
𝐹 × Pitch

2000 × 𝜋 × Efficiency

𝑇 =
172.79 N × 5 mm

2000 × 𝜋 × 0.9

𝑇 =
863.95

5654.87

𝑇 ≈ 0.155 Nm

Conclusion: The torque required to move the load in the worst-case scenario is approximately 0.155
Nm, which is well below the available torque of the NEMA 23 stepper motor (3.0 Nm). Thus, the motor
is more than capable of driving the ball screw linear actuator.
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Appendix C: Camera Configuration Code

The following Swift code was developed by Fabri Sciences to utilize an iPhone’s native camera SDK
using AVFoundation. The AVCameraService object is an actor which initializes the iPhone’s camera in
a thread-safe manner. The service is tailored to capture high-quality data with depth information and
camera properties. Next, the PhotoCaptureDelegate is a class responsible for extracting the image data
from the camera sensors after the time of capture. Lastly, the data output stream is a class responsible
for streaming RGBA image data and Float32 depth data from the camera sensors in real time. The
class conforms to the AVCaptureOutputDataSynchronizer protocol, allowing it to receive paired (by
timestamp) image frames. This class is especially useful because it allows our camera to camera up
to 15 frames worth of data after the AVCapturePhoto is captured, allowing for retrospective temporal
denoising and post-processing.

1

2 //

3 // AVCameraService.swift

4 // Cameras

5 //

6 // Created by Jacob Damant on 2025-02-18.

7 //

8

9 /**

10 An actor that manages the capture pipeline , which includes the capture

session, device inputs, and capture outputs.

11 The app defines it as an ‘actor‘ type to ensure that all camera

operations happen off of the ‘@MainActor ‘.

12 */

13 actor AVCameraService {

14

15 /// The live video output.

16 let videoDataOutput: AVCaptureVideoDataOutput =

AVCaptureVideoDataOutput()

17

18 /// The live depth sensor output.

19 let depthDataOutput: AVCaptureDepthDataOutput =

AVCaptureDepthDataOutput()

20

21 /// An asynchronous queue that is strictly responsible for handling

the synchronization of the video and depth frames.

22 private let dataOutputQueue = DispatchQueue(label:

"av.output.data.synchronizer.queue", qos: .userInitiated ,

attributes: [], autoreleaseFrequency: .workItem)

23

24 /// The synchronizer responsible for syncing video and depth buffers

by their timestamp.
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25 var synchronizer: AVCaptureDataOutputSynchronizer?

26

27 /// A custom delegate responsible for handling and capturing live

video and depth frames.

28 var delegate: OutputDataSynchronizerQueueDelegate?

29

30 /// The data receiver that will process the camera output

31 private var dataReceiver: AVDataReceiver?

32

33

34 /**

35 Establishes an object to record and synchronize the live video and

depth feed.

36 */

37 func setup() {

38

39 // Initialize a synchronizer to handle the synchronization logic

40 self.synchronizer = AVCaptureDataOutputSynchronizer(dataOutputs:

[videoDataOutput , depthDataOutput])

41

42 // Create a delegate and maintain a strong reference

43 let delegate =

OutputDataSynchronizerQueueDelegate(videoDataOutput:

videoDataOutput , depthDataOutput: depthDataOutput)

44 delegate.delegate = dataReceiver // Set the data receiver

45 self.delegate = delegate // Store strong reference

46

47 self.synchronizer?.setDelegate(delegate , queue: dataOutputQueue)

48

49 }

50

51 func captureSyncedBuffers(frameLimit: Int) async throws -> (images:

[SendableCVPixelBuffer], depthMaps: [SendableCVPixelBuffer]) {

52

53 // Ensure the delegate has been initialed before trying to capture

buffers

54 guard let delegate = self.delegate else {

55 throw CameraError.failedToCaptureScan

56 }

57

58 // Wrap the delegate -based capture API in a continuation to use it

in an async context.

59 return try await withCheckedThrowingContinuation { (continuation:

AVOutputDataContinuation) in

60

61 // Set a continuation object to transfer the captured frames

from the delegate
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62 delegate.setContinuation(continuation)

63

64 // Begin capturing the live video and depth buffers

65 delegate.capture(frameLimit: frameLimit)

66 }

67 }

68

69 func setDataReceiver(_ receiver: AVDataReceiver) {

70 self.dataReceiver = receiver

71

72 // Update the output delegate if it exists

73 delegate?.delegate = receiver

74 }

75

76

77 /// A value that indicates whether the capture service is idle or

capturing a photo.

78 @Published private(set) var captureActivity: CameraActivity = .idle

79

80 /// A Boolean value that indicates whether a higher priority event,

like receiving a phone call, interrupts the app.

81 @Published private(set) var isInterrupted = false

82

83 /// A type that connects a preview destination with the capture

session.

84 nonisolated let previewSource: AVPreviewSource

85

86 /// The app’s capture session.

87 private let captureSession = AVCaptureSession()

88

89 /// An object that manages the camera’s photo capture behavior.

90 private let photoCapture = PhotoCapture()

91

92 /// An object that manages the camera’s live output data stream,

including video data and depth data.

93 private let outputDataStream = AVOutputDataStream()

94

95 private let cameraPosition: CameraType.AVPosition

96

97 /// Provides a lookup object for any camera devices that meet the

specified criteria.

98 private let videoDeviceDiscoverySession:

AVCaptureDevice.DiscoverySession

99

100 /// The video input for the currently selected device camera.

101 private var activeVideoInput: AVCaptureDeviceInput?

102
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103 /// A Boolean value that indicates whether the actor finished its

required configuration.

104 private var isSetUp = false

105

106 // MARK: Init

107 init(cameraPosition: CameraType.AVPosition) {

108 self.cameraPosition = cameraPosition

109 self.videoDeviceDiscoverySession =

AVCaptureDevice.DiscoverySession(

110 deviceTypes: [cameraPosition.deviceType],

111 mediaType: .video,

112 cameraPosition == .back ? .back : .front

113 )

114 previewSource = DefaultPreviewSource(session: captureSession)

115 }

116

117

118

119 // MARK: Stop

120 func stop() async {

121 // Stop the capture session if it’s running

122 if captureSession.isRunning {

123 captureSession.stopRunning()

124 }

125

126 // Begin configuration

127 captureSession.beginConfiguration()

128

129 // Remove all inputs

130 for input in captureSession.inputs {

131 captureSession.removeInput(input)

132 }

133

134 // Remove all outputs

135 for output in captureSession.outputs {

136 captureSession.removeOutput(output)

137 }

138

139 // Clear the photo output settings

140 photoCapture.photoOutput.setPreparedPhotoSettingsArray([],

completionHandler: nil)

141

142 // Clear the synchronizer and delegate

143 synchronizer?.setDelegate(nil, queue: nil)

144 synchronizer = nil

145 delegate = nil

146 dataReceiver = nil
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147

148 // Clear the video input

149 activeVideoInput = nil

150

151 // Reset setup flag

152 isSetUp = false

153

154 // Commit configuration

155 captureSession.commitConfiguration()

156

157 // Cancel any ongoing tasks

158 subjectAreaChangeTask?.cancel()

159 subjectAreaChangeTask = nil

160 }

161

162

163

164 // MARK: - Authorization

165

166 /// A Boolean value that indicates whether a person authorizes this

app to use device cameras.

167 /// If they haven’t previously authorized the app, querying this

property prompts them for authorization.

168 var isAuthorized: Bool {

169 get async {

170 let status = AVCaptureDevice.authorizationStatus(for: .video)

171 // Determine whether a person previously authorized camera

access.

172 var isAuthorized = status == .authorized

173 // If the system hasn’t determined their authorization status,

174 // explicitly prompt them for approval.

175 if status == .notDetermined {

176 isAuthorized = await AVCaptureDevice.requestAccess(for:

.video)

177 }

178 return isAuthorized

179 }

180 }

181

182

183 // MARK: - Capture Session Life Cycle

184

185 /**

186 Sets up the capture session based on the selected AV camera.

187

188 - Throws: Throws an error if the capture session cannot be setup.

189 */
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190 func start() async -> Result<Void, ErrorWrapper > {

191

192 // Exit early if not authorized or the session is already running.

193 guard await isAuthorized , !captureSession.isRunning else { return

.success(()) }

194

195 // Configure the session and start it.

196 let setupResult = setUpSession()

197 switch setupResult {

198 case .success():

199 captureSession.startRunning()

200 case .failure(let error):

201 return .failure(error)

202 }

203

204 return .success(())

205 }

206

207

208 // MARK: - Capture Setup

209

210 /**

211 Performs the initial capture session configuration.

212

213 - Returns: Returns void on success and an error if the AV camera

cannot be properly configured.

214 */

215 private func setUpSession() -> Result<Void, ErrorWrapper > {

216

217 // Return early if already set up.

218 guard !isSetUp else { return .success(()) }

219

220 // Observe internal state and notifications.

221 observeOutputServices()

222 observeNotifications()

223

224 do {

225 // Marks the beginning of a single atomic configuration that

can be applied to a running camera session

226 captureSession.beginConfiguration()

227

228 // Retrieve the default camera

229 let videoDevice: AVCaptureDevice =

self.videoDeviceDiscoverySession.devices.first!

230

231 // Add inputs for the default camera device

232 activeVideoInput = try addInput(for: videoDevice)
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233

234 // Configure the session for photo capture by default

235 captureSession.sessionPreset = .photo

236

237 // Add the photo capture output as the default output type.

238 try addOutput(photoCapture.photoOutput)

239

240 // Ensure the photo output supports depth data

241 guard photoCapture.photoOutput.isDepthDataDeliverySupported

else {

242 throw CameraError.failedToSetupCamera

243 }

244 photoCapture.photoOutput.isDepthDataDeliveryEnabled =

photoCapture.photoOutput.isDepthDataDeliverySupported

245

246 // Add the video data output

247 try addOutput(self.videoDataOutput)

248

249 // Configure the buffer format for the streamed video data

250 self.videoDataOutput.videoSettings = [

251 kCVPixelBufferPixelFormatTypeKey as String:

Int(kCVPixelFormatType_32BGRA)

252 ]

253

254 // Add the depth data output

255 try addOutput(self.depthDataOutput)

256

257 // Disable Apple’s filtering algorithms on the depth data

258 self.depthDataOutput.isFilteringEnabled = false

259

260 // Ensure the depth data is formatted as AVDepthData

261 guard let connection = self.depthDataOutput.connection(with:

.depthData) else {

262 throw CameraError.failedToSetupCamera

263 }

264 connection.isEnabled = true

265

266 // Format the video device’s depth data so that it can be

properly utilized by the metal shaders

267 let depthFormats =

videoDevice.activeFormat.supportedDepthDataFormats

268 let filtered = depthFormats.filter({

269 CMFormatDescriptionGetMediaSubType($0.formatDescription)

== kCVPixelFormatType_DisparityFloat32

270 })

271 let selectedFormat = filtered.max(by: {

272 first, second in
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273 CMVideoFormatDescriptionGetDimensions(first.formatDescription).width

274 <

275 CMVideoFormatDescriptionGetDimensions(second.formatDescription).width

276 })

277

278 // Apply the video format

279 try videoDevice.lockForConfiguration()

280 videoDevice.activeDepthDataFormat = selectedFormat

281 videoDevice.unlockForConfiguration()

282

283 self.setup()

284

285 // Observe changes to the default camera’s subject area.

286 observeSubjectAreaChanges(of: videoDevice)

287

288 isSetUp = true

289

290 captureSession.commitConfiguration()

291

292 captureSession.startRunning()

293 } catch {

294 return .failure(.init(CameraError.failedToSetupCamera))

295 }

296

297 return .success(())

298 }

299

300 /**

301 Adds an input to the capture session to connect the specified capture

device.

302

303 - Parameters:

304 - device: An AV camera device that can capture image or audio data.

305 - Returns: The device input on success.

306 - Throws: A .failedToSetupCamera error on failure.

307 */

308 @discardableResult

309 private func addInput(for device: AVCaptureDevice) throws ->

AVCaptureDeviceInput {

310

311 // Try adding the input to the capture session

312 guard let input = try? AVCaptureDeviceInput(device: device),

313 captureSession.canAddInput(input)

314 else {

315 throw CameraError.failedToSetupCamera

316 }

317 captureSession.addInput(input)
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318

319 return input

320 }

321

322 /**

323 Adds an output to the capture session to connect the specified

capture device, if allowed.

324

325 - Parameters:

326 - output: An output object that handles the data coming from the

camera sensors.

327 - Throws: Throws a .failedToSetupCamera error on failure.

328 */

329 private func addOutput(_ output: AVCaptureOutput) throws {

330 // Try adding the output to the capture session

331 guard captureSession.canAddOutput(output) else {

332 throw CameraError.failedToSetupCamera

333 }

334 captureSession.addOutput(output)

335

336 // Configure the connection right after adding the output

337 if let connection = output.connection(with: .video) {

338 connection.isVideoMirrored = false

339 connection.automaticallyAdjustsVideoMirroring = false

340 }

341

342 // Handle depth data connection

343 if let connection = output.connection(with: .depthData) {

344 connection.isVideoMirrored = false

345 connection.automaticallyAdjustsVideoMirroring = false

346 }

347

348 return

349 }

350

351 /// The device for the active video input.

352 private var currentDevice: AVCaptureDevice {

353 guard let device = activeVideoInput?.device else {

354 fatalError("No␣device␣found␣for␣current␣video␣input.")

355 }

356 return device

357 }

358

359 // MARK: - Preview Layer

360

361 private var videoPreviewLayer: AVCaptureVideoPreviewLayer {

362 // Access the capture session’s connected preview layer.
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363 guard let previewLayer = captureSession.connections.compactMap({

$0.videoPreviewLayer }).first else {

364 fatalError("The␣app␣is␣misconfigured.␣The␣capture␣session␣

should␣have␣a␣connection␣to␣a␣preview␣layer.")

365 }

366 return previewLayer

367 }

368

369 // MARK: - Automatic Focus and Exposure

370

371 /// Performs a one-time automatic focus and expose operation.

372 ///

373 /// The app calls this method as the result of a person tapping on the

preview area.

374 func focusAndExpose(at devicePoint: CGPoint) {

375 do {

376 try focusAndExpose(at: devicePoint , isUserInitiated: true)

377 } catch {

378 print("Unable␣to␣perform␣focus␣and␣exposure␣operation:␣

\(error)")

379 }

380 }

381

382 func setExposure(value: Float) async {

383 guard let device = activeVideoInput?.device else { return }

384

385 do {

386 try device.lockForConfiguration()

387

388 // Keep auto-exposure on but adjust the target bias

389 if device.isExposurePointOfInterestSupported {

390 device.exposureMode = .continuousAutoExposure

391

392 // Convert Float to Float64 for device API

393 let targetBias = Float64(value)

394 let minBias = Float64(device.minExposureTargetBias)

395 let maxBias = Float64(device.maxExposureTargetBias)

396

397 // Clamp the bias value between min and max

398 let clampedBias = max(minBias, min(targetBias , maxBias))

399

400 await device.setExposureTargetBias(Float(clampedBias))

401 }

402

403 device.unlockForConfiguration()

404 } catch {

405 print("Error␣setting␣exposure:␣\(error)")
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406 }

407 }

408

409 // Observe notifications of type ‘subjectAreaDidChangeNotification ‘

for the specified device.

410 private func observeSubjectAreaChanges(of device: AVCaptureDevice) {

411 // Cancel the previous observation task.

412 subjectAreaChangeTask?.cancel()

413 subjectAreaChangeTask = Task {

414 // Signal true when this notification occurs.

415 for await _ in NotificationCenter.default.notifications(named:

AVCaptureDevice.subjectAreaDidChangeNotification , object:

device).compactMap({ _ in true }) {

416 // Perform a system-initiated focus and expose.

417 try? focusAndExpose(at: CGPoint(x: 0.5, y: 0.5),

isUserInitiated: false)

418 }

419 }

420 }

421 private var subjectAreaChangeTask: Task<Void, Never>?

422

423 private func focusAndExpose(at devicePoint: CGPoint, isUserInitiated:

Bool) throws {

424 // Configure the current device.

425 let device = currentDevice

426

427 // The following mode and point of interest configuration requires

obtaining an exclusive lock on the device.

428 try device.lockForConfiguration()

429

430 let focusMode = isUserInitiated ?

AVCaptureDevice.FocusMode.autoFocus : .continuousAutoFocus

431 if device.isFocusPointOfInterestSupported &&

device.isFocusModeSupported(focusMode) {

432 device.focusPointOfInterest = devicePoint

433 device.focusMode = focusMode

434 }

435

436 let exposureMode = isUserInitiated ?

AVCaptureDevice.ExposureMode.autoExpose :

.continuousAutoExposure

437 if device.isExposurePointOfInterestSupported &&

device.isExposureModeSupported(exposureMode) {

438 device.exposurePointOfInterest = devicePoint

439 device.exposureMode = exposureMode

440 }
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441 // Enable subject-area change monitoring when performing a

user-initiated automatic focus and exposure operation.

442 // If this method enables change monitoring , when the device’s

subject area changes, the app calls this method a

443 // second time and resets the device to continuous automatic focus

and exposure.

444 device.isSubjectAreaChangeMonitoringEnabled = isUserInitiated

445

446 // Release the lock.

447 device.unlockForConfiguration()

448 }

449

450 // MARK: - Photo capture

451 func capturePhoto() async throws -> SendableAVCapturePhoto {

452 try await photoCapture.capturePhoto()

453 }

454

455 private var outputService: PhotoCapture { photoCapture }

456

457

458 // MARK: - Capture mode selection

459

460 /// Changes the mode of capture, which can be ‘photo‘ or ‘video‘.

461 ///

462 /// - Parameter ‘captureMode ‘: The capture mode to enable.

463 func setCaptureMode() throws {

464 // Update the internal capture mode value before performing the

session configuration.

465

466 // Change the configuration atomically.

467 captureSession.beginConfiguration()

468 defer { captureSession.commitConfiguration() }

469

470 // The app needs to remove the movie capture output to perform

Live Photo capture.

471 captureSession.sessionPreset = .photo

472 }

473

474

475 // MARK: - Internal state management

476

477 /// Merge the ‘captureActivity ‘ values of the photo and movie capture

services ,

478 /// and assign the value to the actor’s property.‘

479 private func observeOutputServices() {

480 Publishers.Merge(photoCapture.$captureActivity ,

movieCapture.$captureActivity)
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481 .assign(to: &$captureActivity)

482 }

483

484 /// Observe capture-related notifications.

485 private func observeNotifications() {

486 Task {

487 for await reason in

NotificationCenter.default.notifications(named:

AVCaptureSession.wasInterruptedNotification)

488 .compactMap({

$0.userInfo?[AVCaptureSessionInterruptionReasonKey] as

AnyObject? })

489 .compactMap({

AVCaptureSession.InterruptionReason(rawValue:

$0.integerValue) }) {

490 /// Set the ‘isInterrupted ‘ state as appropriate.

491 isInterrupted = [.audioDeviceInUseByAnotherClient ,

.videoDeviceInUseByAnotherClient].contains(reason)

492 }

493 }

494

495 Task {

496 // Await notification of the end of an interruption.

497 for await _ in NotificationCenter.default.notifications(named:

AVCaptureSession.interruptionEndedNotification) {

498 isInterrupted = false

499 }

500 }

501

502 Task {

503 for await error in

NotificationCenter.default.notifications(named:

AVCaptureSession.runtimeErrorNotification)

504 .compactMap({ $0.userInfo?[AVCaptureSessionErrorKey] as?

AVError }) {

505 // If the system resets media services , the capture

session stops running.

506 if error.code == .mediaServicesWereReset {

507 if !captureSession.isRunning {

508 captureSession.startRunning()

509 }

510 }

511 }

512 }

513 }

514 }

515
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516 //

517 // PhotoCapture.swift

518 // Cameras

519 //

520 // Created by Jacob Damant on 2025-02-24.

521 //

522

523 @preconcurrency import AVFoundation

524 import CoreImage

525 import SwiftUI

526 import Utilities

527

528 typealias PhotoContinuation = CheckedContinuation <SendableAVCapturePhoto ,

Error>

529

530 /// An object that manages a photo capture output to perform take

photographs.

531 final class PhotoCapture: Sendable {

532

533 /// The capture output type for this service.

534 let photoOutput = AVCapturePhotoOutput()

535

536 // MARK: - Capture a photo.

537

538 /**

539 The app calls this method when the user taps the photo capture button.

540

541 - Returns: An AVCapturePhoto encapsulating an RGB image, depth map,

and camera properties.

542 - Throws: Throws an error if the camera fails to generate an image.

543 */

544 func capturePhoto() async throws -> SendableAVCapturePhoto {

545

546 // Wrap the delegate -based capture API in a continuation to use it

in an async context.

547 try await withCheckedThrowingContinuation { continuation in

548

549 // Create a settings object to configure the photo capture.

550 let photoSettings = createPhotoSettings()

551

552 let delegate = PhotoCaptureDelegate(continuation: continuation)

553 monitorProgress(of: delegate)

554

555 // Capture a new photo with the specified settings.

556 photoOutput.capturePhoto(with: photoSettings , delegate:

delegate)

557 }

63



Phase III Report

558 }

559

560 // MARK: - Create a photo settings object.

561

562 /**

563 Create a photo settings object with a configuration that produces the

best data for 3D scans.

564

565 - Returns: An object encapsulating the configured photo capture

settings.

566 */

567 private func createPhotoSettings() -> AVCapturePhotoSettings {

568

569 // Create a new settings object to configure the photo capture.

570 let photoSettings = AVCapturePhotoSettings()

571

572

573 // Set the largest dimensions that the photo output supports

574 // ‘CaptureService ‘ automatically updates the photo output’s

‘maxPhotoDimensions ‘ when the capture pipeline changes

575 photoSettings.maxPhotoDimensions = photoOutput.maxPhotoDimensions

576

577 // Set the flash mode to off

578 photoSettings.flashMode = .off

579

580 // Enable depth data delivery

581 photoSettings.isDepthDataDeliveryEnabled =

photoOutput.isDepthDataDeliveryEnabled

582

583 photoSettings.isDepthDataFiltered = false

584

585 // Set the priority of the capture to quality

586 if let prioritization =

AVCapturePhotoOutput.QualityPrioritization(rawValue:

AVCapturePhotoOutput.QualityPrioritization.speed.rawValue) {

587 photoSettings.photoQualityPrioritization = prioritization

588 }

589

590 return photoSettings

591 }

592

593 /// Monitors the progress of a photo capture delegate.

594 ///

595 /// The ‘PhotoCaptureDelegate ‘ produces an asynchronous stream of

values that indicate its current activity.

596 /// The app propagates the activity values up to the view tier so the

UI can update accordingly.

64



Phase III Report

597 private func monitorProgress(of delegate: PhotoCaptureDelegate ,

isolation: isolated (any Actor)? = #isolation) {

598 Task {

599 _ = isolation

600 // Asynchronously monitor the activity of the delegate while

the system performs capture.

601 for await _ in delegate.activityStream {

602 captureActivity = activity

603 }

604 }

605 }

606

607

608 // MARK: - Update the photo output configuration

609

610 /**

611 Reconfigures the photo output and updates the output service’s

capabilities accordingly.

612

613 The ‘CaptureService ‘ calls this method whenever you change cameras.

614

615 - Parameters:

616 - device: The type of capture device used to take the photo.

617 */

618 func updateConfiguration(for device: AVCaptureDevice) {

619 // Enable all supported features.

620 photoOutput.isDepthDataDeliveryEnabled =

photoOutput.isDepthDataDeliverySupported

621 photoOutput.maxPhotoDimensions =

device.activeFormat.supportedMaxPhotoDimensions.last ??

CMVideoDimensions()

622 photoOutput.isLivePhotoCaptureEnabled =

photoOutput.isLivePhotoCaptureSupported

623 photoOutput.maxPhotoQualityPrioritization = .quality

624 photoOutput.isResponsiveCaptureEnabled =

photoOutput.isResponsiveCaptureSupported

625 photoOutput.isFastCapturePrioritizationEnabled =

photoOutput.isFastCapturePrioritizationSupported

626 photoOutput.isAutoDeferredPhotoDeliveryEnabled =

photoOutput.isAutoDeferredPhotoDeliverySupported

627 photoOutput.isAutoDeferredPhotoDeliveryEnabled = false

628 }

629 }

630

631 // MARK: - A photo capture delegate to process the captured photo.

632
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633 /// An object that adopts the ‘AVCapturePhotoCaptureDelegate ‘ protocol to

respond to photo capture life-cycle events.

634 ///

635 /// The delegate produces a stream of events that indicate its current

state of processing.

636 private final class PhotoCaptureDelegate: NSObject,

AVCapturePhotoCaptureDelegate , Sendable {

637

638 private let continuation: PhotoContinuation

639

640 /// A stream of capture activity values that indicate the current

state of progress.

641 let activityStream: AsyncStream <CameraActivity >

642 private let activityContinuation:

AsyncStream <CameraActivity >.Continuation

643

644 /// Creates a new delegate object with the checked continuation to

call when processing is complete.

645 init(continuation: PhotoContinuation) {

646 self.continuation = continuation

647

648 let (activityStream , activityContinuation) =

AsyncStream.makeStream(of: CameraActivity.self)

649 self.activityStream = activityStream

650 self.activityContinuation = activityContinuation

651 }

652

653 func photoOutput(_ output: AVCapturePhotoOutput , willCapturePhotoFor

resolvedSettings: AVCaptureResolvedPhotoSettings) {

654 // Signal that a capture is beginning.

655 activityContinuation.yield(.photoCapture)

656 }

657

658 func photoOutput(_ output: AVCapturePhotoOutput ,

didFinishProcessingPhoto photo: AVCapturePhoto , error: Error?) {

659 if let error = error {

660 print("Error:␣Failed␣to␣retrieve␣the␣AVCapturePhoto␣from␣the␣

camera␣delegate:␣\(error.localizedDescription)")

661 continuation.resume(throwing: CameraError.failedToCaptureScan)

662 return

663 }

664

665 guard let sendablePhoto: SendableAVCapturePhoto = try?

SendableAVCapturePhoto(photo, depthType: .TrueDepth) else {

666 print("Error:␣Failed␣to␣convert␣photo␣to␣sendable␣format")

667 continuation.resume(throwing: CameraError.failedToCaptureScan)

668 return
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669 }

670

671 continuation.resume(returning: (sendablePhoto))

672 }

673 }

674

675

676 //

677 // AVOutputDataStream.swift

678 // Cameras

679 //

680 // Created by Jacob Damant on 2025-02-20.

681 //

682

683 import AVFoundation

684 import Domain

685 import Foundation

686 import Utilities

687

688 /// Allows the delegate to return its result on success in an asyncronous

function.

689 typealias AVOutputDataContinuation = CheckedContinuation <(images:

[SendableCVPixelBuffer], depthMaps: [SendableCVPixelBuffer]), Error>

690

691 /**

692 An object that manages a photo capture output to perform take photographs.

693 */

694 final class AVOutputDataStream {

695

696 /// The live video output.

697 let videoDataOutput: AVCaptureVideoDataOutput =

AVCaptureVideoDataOutput()

698

699 /// The live depth sensor output.

700 let depthDataOutput: AVCaptureDepthDataOutput =

AVCaptureDepthDataOutput()

701

702 /// An asynchronous queue that is strictly responsible for handling

the synchronization of the video and depth frames.

703 private let dataOutputQueue = DispatchQueue(label:

"av.output.data.synchronizer.queue", qos: .userInitiated ,

attributes: [], autoreleaseFrequency: .workItem)

704

705 /// The synchronizer responsible for syncing video and depth buffers

by their timestamp.

706 var synchronizer: AVCaptureDataOutputSynchronizer?

707
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708 /// A custom delegate responsible for handling and capturing live

video and depth frames.

709 var delegate: (any OutputDataSynchronizerQueueDelegateProtocol)?

710

711 /**

712 Establishes an object to record and synchronize the live video and

depth feed.

713 */

714 func setup() {

715

716 // Initialize a synchronizer to handle the synchronization logic

for the video and depth camera feeds

717 self.synchronizer = AVCaptureDataOutputSynchronizer(dataOutputs:

[videoDataOutput , depthDataOutput])

718

719 // Create a delegate to handle the live video and depth buffers

provided by the synchronizer

720 let delegate =

OutputDataSynchronizerQueueDelegate(videoDataOutput:

videoDataOutput , depthDataOutput: depthDataOutput)

721 self.delegate = delegate

722 self.synchronizer?.setDelegate(delegate , queue: dataOutputQueue)

723

724 }

725

726 /**

727 The app calls this method immediately after capturing a photo to

store the synced video and depth frames.

728

729 - Parameters:

730 - frameLimit: The number of frames that should be captured by the

data output synchronizer.

731 */

732 func captureSynchronizedBuffers(frameLimit: Int) async throws ->

(images: [SendableCVPixelBuffer], depthMaps:

[SendableCVPixelBuffer]) {

733

734 // Ensure the delegate has been initialed before trying to capture

buffers

735 guard let delegate = self.delegate else {

736 throw CameraError.failedToCaptureScan

737 }

738

739 // Wrap the delegate -based capture API in a continuation to use it

in an async context.

740 return try await withCheckedThrowingContinuation { (continuation:

AVOutputDataContinuation) in
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741

742 // Set a continuation object to transfer the captured frames

from the delegate

743 delegate.setContinuation(continuation)

744

745 // Begin capturing the live video and depth buffers

746 delegate.capture(frameLimit: frameLimit)

747 }

748 }

749 }

750

751 /**

752 Defines the custom method used to capture live video and depth buffers as

they are streamed.

753 */

754 protocol OutputDataSynchronizerQueueDelegateProtocol:

AVCaptureDataOutputSynchronizerDelegate {

755

756 /**

757 Adds a continuation object to the syncronizer delegate so that the

captured frames can be fetched from the delegate after the capture.

758

759 - Parameters:

760 - continuation: A custom AVOutputData continuation that stores

image and depth map buffers.

761 */

762 func setContinuation(_ continuation: AVOutputDataContinuation)

763

764 /**

765 Triggers the syncronizer delegate to being capturing its live video

and depth buffers.

766

767 - Parameters:

768 - frameLimit: The maximum number of frames captured by the

delegate.

769 */

770 func capture(frameLimit: Int)

771

772 }

773

774 final class OutputDataSynchronizerQueueDelegate: NSObject,

OutputDataSynchronizerQueueDelegateProtocol {

775

776 /// A reference to the camera’s live video feed.

777 let videoDataOutput: AVCaptureVideoDataOutput

778

779 /// A reference to the camera’s live depth feed.
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780 let depthDataOutput: AVCaptureDepthDataOutput

781

782 /// A continuation object that provides an outlet to transfer captured

frames out of the delegate.

783 var continuation: AVOutputDataContinuation?

784

785 /// A queue that stores video and depth map frames until it reaches

its specified limit.

786 var bufferQueue: BufferQueue?

787

788 /// Indicates if the buffer queue should enque the live frames .

789 var isQueueRunning: Bool = false

790

791 weak var delegate: AVDataReceiver?

792

793 init(videoDataOutput: AVCaptureVideoDataOutput , depthDataOutput:

AVCaptureDepthDataOutput) {

794 self.videoDataOutput = videoDataOutput

795 self.depthDataOutput = depthDataOutput

796 super.init()

797 }

798

799 /**

800 Set a custom AVOutputData continuation object to transport video and

depth frames from the syncronizer delegate.

801

802 - Parameters:

803 - continuation: The continuation object created by the capture

function that calls the syncronizer delegate.

804 */

805 func setContinuation(_ continuation: AVOutputDataContinuation) {

806 self.continuation = continuation

807 }

808

809 /**

810 Captures the specified number of frames from the camera’s live feed,

including video and depth map buffers.

811

812 - Parameters:

813 - frameLimit: The maximum number of frames to capture from the

delegate.

814 */

815 func capture(frameLimit: Int) {

816 self.bufferQueue = BufferQueue(maxSize: frameLimit)

817 self.isQueueRunning = true

818 }

819
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820 func dataOutputSynchronizer(_ synchronizer:

AVCaptureDataOutputSynchronizer , didOutput

synchronizedDataCollection: AVCaptureSynchronizedDataCollection) {

821

822 // Unwrap the synchronizer data

823 guard let syncedVideoData: AVCaptureSynchronizedSampleBufferData =

synchronizedDataCollection.synchronizedData(for:

self.videoDataOutput) as? AVCaptureSynchronizedSampleBufferData ,

824 let syncedDepthData: AVCaptureSynchronizedDepthData =

synchronizedDataCollection.synchronizedData(for:

self.depthDataOutput) as? AVCaptureSynchronizedDepthData

825 else {

826 return

827 }

828

829 // Only proceed if the video and depth frames were properly

delivered after the synchronization point

830 guard !syncedVideoData.sampleBufferWasDropped &&

!syncedDepthData.depthDataWasDropped else {

831 return

832 }

833

834 guard let videoBuffer: CVPixelBuffer =

CMSampleBufferGetImageBuffer(syncedVideoData.sampleBuffer) else

{

835 return

836 }

837 let depthMapBuffer: CVPixelBuffer =

syncedDepthData.depthData.converting(toDepthDataType:

kCVPixelFormatType_DepthFloat32).depthDataMap

838

839 let temp: UIImage = UIImage(pixelBuffer: videoBuffer)!

840

841 delegate?.onNewAVData(image: videoBuffer , depthMap:

depthMapBuffer , depthData: syncedDepthData.depthData)

842

843 // Convert the buffers into a sendable format to obey Swift

concurrency rules

844 let sendableVideoBuffer: SendableCVPixelBuffer =

SendableCVPixelBuffer(buffer: videoBuffer)

845 let sendableDepthMapBuffer: SendableCVPixelBuffer =

SendableCVPixelBuffer(buffer: depthMapBuffer)

846

847 // Eneque the video and depth buffers if the camera is capturing

848 if isQueueRunning {

849 guard let bufferQueue = self.bufferQueue else {
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850 continuation?.resume(throwing:

CameraError.failedToCaptureScan)

851 return

852 }

853 let isFull: Bool = bufferQueue.enqueue(imageBuffer:

sendableVideoBuffer , depthMapBuffer: sendableDepthMapBuffer)

854

855 // Return the buffer queue once it is full

856 if isFull {

857 isQueueRunning = false

858 let syncedBuffers = bufferQueue.fetchBuffers()

859 continuation?.resume(returning:

(syncedBuffers.imageBuffers ,

syncedBuffers.depthMapBuffers))

860 }

861 }

862 }

863 }
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Appendix D: Cloud System

D.1 System Capture, Coordination, & Compute

The solution proposed by Fabri Sciences involves precise coordination of multiple sub-systems, including
the ROS2 robotic arm, the iPhone-based imaging application, and the backend server for real-time com-
munication, data processing, and storage. The primary objective is to enable precise robotic movement
for multi-angle image acquisition, where the iPhone captures RGB images and depth maps that are later
processed for the client’s research purposes. The system comprises four key subsystems:

• The coordinator server, which facilitates communication and state management between the
subsystems.

• The iOS application, which is responsible for image capture and data transmission.

• The ROS2-based robotic system, which controls arm movement and provide live positioning
feedback to the coordination server.

• The database and storage layer, which manages capture metadata and file storage.

Attached below is a high-level diagram outlining the relationships between the previously-listed software
sub-systems.

73



Phase III Report

Figure D.4. System architecture for the ROS2 assembly, iOS capture application, and coordi-
nation server.

Some of the key technical challenges to overcome include real-time communication between subsystems,
high-bandwidth data transfer, and ensuring synchronization between robotic movement and image cap-
ture. Efficiently managing large image payloads while keeping network latency low is crucial due to the
unpredictable nature of wireless internet connections. Additionally, the architecture must be designed to
scale for multi-robot environments while keeping infrastructure costs manageable.

D.2 Capture Configuration

The mobile application is responsible for capturing and transmitting high-quality image data as the ROS2
system moves it in 3D space. The iPhone application relies on AVFoundation, Apple’s powerful media
framework, to capture both RGB images and depth maps. Capturing complex image sets (in our case, 15
RGB-depth pairs with associated camera properties) requires an efficient, low-memory first-in-first-out
(FIFO) capture queue system. Instead of capturing all frames at once, the app leverages AVCaptureSession
with a custom capture delegate to ensure sequential image acquisition with proper exposure, focus, and
depth accuracy. The AVCaptureSession actor, DataOutputStream class, and PhotoCaptureDelegate is
included in Appendix C.

The AVCaptureSession is configured to use AVCapturePhotoOutput in parallel with the AVCapture-
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DataOutputSynchronizer, supporting high-resolution image capture alongside depth data. It operates in
a multi-format capture pipeline, where different streams (RGB, depth, and metadata) are processed in
sync. The capture format balances performance and data accuracy by utilizing JPEG compression for
the RGB images and Apple’s disparity depth format for depth maps.

A capture delegate queue is utilized to process images efficiently, allowing the system to queue, prioritize,
and process each frame before moving to the next. Images and depth maps are saved to the device’s
caches directory and then removed from memory. This ensures that image data is captured in a structured
manner without overwhelming device memory. Capture delegates handle multi-threaded callbacks,
ensuring images are stored in a way that minimizes lag between captures and synchronizes correctly with
the robot’s movement.

D.3 Communication & Data Transmission

Once images are captured on the iPhone application, they need to be efficiently transmitted to the backend
server so they can be reviewed by the client’s research team retrospectively. Image payloads can be large,
with each capture session producing hundreds of megabytes of data. To optimize transfer speed, images
are compressed using JPEG format with metadata embedding, reducing size while preserving quality.
Additionally, depth maps are stored in efficient 32-bit floating-point representations to maintain precision
while reducing storage requirements.

The system’s network requirements include low-latency, high-bandwidth connections. A WebSocket-
based communication channel is used for real-time control signals, ensuring minimal delay and bi-
directional communication between sub-systems. Utilizing WebSocket communication allows for the
systems to communicate with each other without wasting polling bandwidth by repeatedly pinging the
remote server. Meanwhile, a REST API is employed for image uploads and database interactions,
ensuring reliable and scalable data transmission since WebSocket channels are optimized for low-data
payloads. The combination of WebSockets for commands and REST APIs for bulk data ensures that the
system remains responsive while efficiently handling high data throughput.

D.4 System Integration

API design is central to the system’s integration, ensuring that different components interact seamlessly.
The backend WebSocket API handles real-time state synchronization (by opening a persistent, bi-
directional channel that can transmit small amounts of data between a server and client), while a
RESTful API (which is excellent for client-initialized communication and data transmission) manages
image uploads, retrieval, and metadata storage. Endpoints are designed to be lightweight and efficient,
with JSON-based communication and optional compression for large datasets.

The mobile application integration involves implementing a WebSocket client for live communication
and using Apple’s URLSession framework for REST-based image uploads. The app must handle network
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failures gracefully by implementing retry mechanisms and ensuring transactions are atomic (i.e., partial
uploads do not corrupt session data).

The ROS2 integration involves a WebSocket-based ROS2 node that communicates directly with the
coordinator server. The ROS node listens for movement commands and publishes status updates to
ensure robotic motion is synchronized with image capture.

D.5 Infrastructure Scalability

The system must handle significant computational and storage loads as Kondor Devices intends on scaling
this system to multiple robotic arms in the future. The main sources of stress include high-frequency
WebSocket updates, concurrent image uploads, and database queries. A combination of edge computing
(processing data on the iPhone and ROS system) and cloud-based storage helps balance these loads. For
cloud deployment, the required AWS services include:

• Amazon EC2: Hosts the WebSocket server and API.

• Amazon S3: Stores image data and depth maps.

• Amazon RDS (PostgreSQL): Manages metadata and scan logs.

For prototyping, cloud costs are minimized by utilizing local compute alternatives (running the Web-
Socket server on a dedicated PC connected to the same Wi-Fi network as the iPhone and ROS2 system).
This eliminates cloud costs but reduces scalability.

To scale for multiple robots, the system must support multiple WebSocket connections, ensuring each
robot operates independently while synchronizing data with the backend. A load-balanced architecture
using multiple EC2 instances and containerized deployments will help distribute the workload.
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Appendix E: ROS Integration and Simulation Framework

To ensure seamless integration between the software and hardware components, the Robot Operating
System (ROS) serves as the central communication hub. ROS processes user commands—such as
moving the robotic arm to specific positions or retrieving joint states—and translates these commands
into actionable instructions for the microcontroller.

E.1 Simulation Environment

Given the high cost of the robotic arm, it is essential to first simulate its movements in a virtual environment
to validate motion planning and detect potential collisions before execution on real hardware. In this setup,
MoveIt 2 handles motion planning, while Gazebo provides a physics-based simulation that accurately
models real-world interactions such as gravity, friction, and collisions. Simultaneously, Rviz is used for
visualization, though it functions purely as an animation tool rather than a physics-based simulator like
Gazebo. Two custom scripts were added. The first, motion-control-moveit-ik.cpp, allows users to input
an array of target points for automatic motion execution. It also runs as a node that publishes the robot’s
state and position for use by other software. The second, add-collision.cpp, inserts virtual objects to
represent the real environment, helping detect collisions before execution. If one is detected (highlighted
red in Figure 6), the plan stops. MoveIt 2 simplifies inverse and forward kinematics using built-in solvers
like getPositionIK() and getPositionFK(), avoiding manual calculations. A detailed explanation of these
functions is provided in the Appendix B3 section. Once simulation is validated, the control stack can be
transferred to the physical robot with minimal changes, ensuring reliable and safe deployment.

Figure E.5. Visualization of robotic arm control via ROS and MoveIt 2 simulation.
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Appendix F: Computer Vision System

The first revision of the computer vision code, designed to determine the spatial relationship between
protein slides containing biological samples and the robotic arm, has been completed. The primary
objective of this software subsystem is to capture the environment accurately, thereby facilitating the
analysis of light refraction at varying angles and distances as the robotic arm maneuvers the camera.

Figure F.6. Alignment algorithm ArUco detection and 3D scene reconstruction.

The initial depth maps generated directly by the iPhone’s camera were inadequate for meaningful analysis,
as illustrated in Figure F.7. However, through integration of advanced computer vision techniques
leveraging ArUco fiducial markers, the system achieves significantly enhanced depth map accuracy
(Figure F.8).
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Figure F.7. Initial depth map captured by
the iPhone (insufficient quality).

Figure F.8. Refined depth map generated
via computer vision techniques.

Using paired depth-map sets, the implemented computer vision algorithms train the system to denoise and
reconstruct depth data, substantially improving the accuracy and reliability of captured data. Crucially,
the accuracy of the system is no longer mechanically constrained, as positional inaccuracies inherent to the
robot’s physical movements (such as translation and rotation) are explicitly measured and compensated
for via image-based computer vision calculations.

The source code utilized for object detection, 3D reconstruction, and visualization is available on GitHub.
Additionally, a comprehensive video overview of the software implementation can be found on Loom.

Key benefits of integrating the computer vision subsystem into the robotic arm prototype include:

• High-precision robotic movements without extensive mechanical tuning.

• Mitigation of mechanical issues such as gearbox backlash and accumulated errors common in
open-loop control systems.

• Software-driven correction of depth and positional inaccuracies, removing dependency on precise
physical mounting and alignment.
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Appendix G: Operating Instructions

1. Power-On Sequence

(a) Switch on 24 V DC supply (motors/pump) and 5V logic rail.

(b) Verify Teensy heartbeat LED and ROS PC link-status LEDs are solid.

2. Network & Software Initialization

(a) Connect the iPhone and ROS PC to the dedicated Wi-Fi SSID.

(b) On the ROS PC, run: ros2 launch annin ar4 moveit config bringup.launch.py.

(c) Start the Python coordination server: python main.py.

3. iPhone Capture App

(a) Open the SlideCapture app, enter server IP, tap Connect.

(b) Confirm “WebSocket Connected” status banner.

4. System Homing & Calibration

(a) In RViz, click Home All. Ensure joints reach zero without alarms.

(b) Run ros2 service call /aruco calibrate to update camera–slide transform.

5. Load Slides

(a) Place tantalum slides in the stage wells; orient fiducial side up.

(b) Press the stage clamp lever until it locks.

6. Start Capture Routine

(a) On the ROS PC, execute: ros2 launch capture routine.launch.py.

(b) Monitor vacuum gauge; ensure –60 kPa seal is achieved within 1s per pick.

(c) Observe live RGB/depth preview in the iPhone app for focus/exposure.

7. Data Verification

(a) Upon completion, open /data/session latest and inspect a random RGB–depth pair.

(b) Verify ArUco pose error in log¡0.5 mm RMS; re-calibrate if exceeded.

8. Cloud Sync

(a) Trigger upload: python upload to s3.py --session session latest.

(b) Confirm AWS S3 console shows matching file count; check MD5 hash log.

9. Shutdown Procedure

(a) Close the iPhone app (double-tap Stop Capture → Disconnect).
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(b) In ROS, execute ros2 service call /shutdown.

(c) Turn off 24 V, then 5 V supplies; disconnect compressed-air line if servicing gripper.

10. Daily Maintenance

(a) Wipe slide stage with IPA; inspect vacuum pad for debris.

(b) Backup ROS bag and calibration YAML to NAS.
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Appendix H: Assembly Instructions

1. Inventory & Tools

(a) Verify all mechanical parts (gantry rails, fasteners, AR4 robotic arm, 3-D–printed gripper
adapter, vacuum pad, barbed fittings, cable chain, iPhone mount, slide stage, ArUco boards).

(b) Verify electrical items (Teensy 4.1, Arduino Nano, power supplies, stepper drivers, limit
switches, wiring harness, RJ-45/USB cables).

(c) Verify pneumatics (vacuum pump, 6 mm PU tubing, check valve).

(d) Required tools: metric hex keys (M2–M6), Torx bits, #1 Phillips, torque wrench, side-cutters,
zip-ties, Loctite 242, crimpers.

2. Gantry Frame

(a) Fasten X-axis linear rails to the aluminium baseplate (use M5 socket-head screws + Loctite).

(b) Install the X-axis stepper, pulley, and timing belt; tension belt to 2–3 mm deflection over
100 mm span.

(c) Attach Y-axis carriage to X-axis slider; mount Y-axis rail and repeat belt installation.

(d) Fit cable chain to the gantry spine; leave 100 mm slack at each end.

3. Robotic Arm Mounting

(a) Secure the AR4 arm base to the Y-axis carriage using four M8 bolts (torque 25 N·m).

(b) Verify arm verticality with a machinist’s square; shim if deviation >0.25°.

4. Vacuum Gripper Assembly

(a) Thread the M6 vacuum pad into the 3-D–printed adapter; apply a drop of Loctite 242.

(b) Attach adapter to the arm end-effector using a 12 mm M4 cap screw; torque 2 N·m.

(c) Push-fit 6 mm PU tubing onto the pad’s barbed connector; secure with a zip-tie.

5. Pneumatic Routing

(a) Route tubing through the cable chain to the vacuum pump; avoid ¿ 150 mm bend radius.

(b) Insert an in-line check valve 150 mm upstream of the gripper.

(c) Mount the pump beneath the baseplate with rubber grommets; connect to 24V DC supply.

6. Slide Stage & Fiducials

(a) Fix the aluminium slide holder at the gantry datum using countersunk M4 screws.

(b) Affix ArUco boards at the four corners of the stage (adhesive backing, ensure coplanarity).

(c) Verify board spacing equals CAD model (±1 mm) for accurate pose estimation.

82



Phase III Report

7. iPhone Camera Mount

(a) Install the magnetic iPhone clamp to the gripper adapter (opposite the pad).

(b) Place iPhone so rear lenses face the slide stage; tighten clamp to finger-tight plus 1/8 turn.

8. Electrical Integration

(a) Terminate stepper motors to drivers; observe colour code per AR4 wiring diagram.

(b) Connect limit switches to Teensy GPIO; test continuity.

(c) Provide 24V @ 10A to motors/pump and 5V @ 3A to logic rails; common ground star-point.

9. Firmware & ROS Setup

(a) Flash annin ar4 firmware to Teensy and Nano (PlatformIO).

(b) On the ROS 2 PC (Ubuntu 22.04), clone annin ar4 workspace, build with colcon.

(c) Launch moveit config demo; confirm joint-state feedback in RViz.

10. Coordinator Server & iOS App

(a) Start the Python coordination server: python main.py--port-8765.

(b) Install the capture app on the iPhone; set server IP and Wi-Fi credentials.

(c) Verify WebSocket handshake appears in server log.

11. Calibration & Homing

(a) Home each joint via ROS service call; ensure limit switches trigger correctly.

(b) Run the custom calibration node to record transformation between ArUco origin and TCP.

(c) Store calibration YAML in /.ros/calibration/.

12. Dry-Run Validation

(a) Execute the test pick place.launch.py script without slides; observe gripper seal and
release.

(b) Check that vacuum reaches 60kPa within 0.8s; adjust pump regulator if necessary.

(c) Review live depth frames; ensure ArUco pose error¡0.5mm RMS.

13. Operational Test

(a) Load five tantalum slides into the stage; start the capture routine.

(b) Confirm sequential RGB–depth pairs are saved to /data/session.

(c) Inspect first capture set for focus, exposure, and depth artifacts; iterate settings if required.

14. Data Sync & Backup

(a) Verify S3 bucket upload via REST API completes with HTTP-200 response.
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(b) Export ROS bag for the session; compress and archive to project NAS.

15. Final Acceptance

(a) Run the 30-slide automated protocol; target completion time ¡4h.

(b) Sign off checklist for mechanical, electrical, and software subsystems.

(c) Document calibration constants and firmware hashes in the project logbook.
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Appendix I: Safety Requirements

The AR4-MK3 robotic arm, although smaller than industrial models, has enough torque to pose safety
risks if the arm overextends. To mitigate hazards, operators must follow the safety standards outlined in
Table I.3.

Table I.3: Safety standards for the robotic arm project.

Standard Title Application

Canadian Standards
Association (CSA)

CSA 60601-1 Section 9.2.2.4: Install physical guards to
prevent contact with moving parts.
Section 9.2.2.6: Implement speed limits to
prevent overextension and reduce collisions.
Section 9.2.4: Provide easily accessible
emergency stop buttons near operators.

Occupational Health and
Safety (OHS)

OHS Code (2009) Section 209.1(2): Ensure secure installation of
the robot in its designated workspace.
Section 212(1): Ensure complete power
isolation before working on the robots.
Section 317: Implement fail-safe mechanisms
for unexpected power or system failures.

ISO/TS 15066 Collaborative Robot Safety Section 5.3: Monitor force and speed of the
robotic arm and gripper to prevent injuries.
Section 5.4: Ensure emergency stop
mechanisms meet collaborative robot standards.
Section 6.2: Clearly mark collaborative zones to
prevent unintended human-robot interactions.

ANSI/RIA R15.06 Industrial Robot Safety Section 5.5: Perform risk assessments for
custom hardware and software components.
Section 6.1: Install safeguards on moving parts
to prevent unintended arm over-extension.
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Appendix J: Drawing Tree and Detailed Design Drawings

J.1 Drawing Tree
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J.2 Design Drawings
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Appendix K: Updated Project Timeline

Fabri Sciences has elected to use Jira as its task management tool of choice. Jira offers a diverse set
of project management services to organize deadlines, categorize work, assign tasks, and more. Jira
is commonly used in technology-oriented companies as it allows for engineering teams to maintain
momentum while working on extremely massive projects.

K.1 Hours Logged Per Person

Over the course of the project, a total of 625 engineering hours were logged by the team. These hours
were distributed across three development phases:

• Phase I: 70.5 hours

• Phase II: 204.5 hours

• Phase III: 350 hours

The following team members contributed to the project: Wesley Eze, Connor Poveledo, Jacob Damant,
Minh Luu, Gerlof Bakker, and Eric Petersen. Time contributions varied based on the scope and
complexity of each phase, as well as individual roles and responsibilities within the project.

The table below outlines the approximate hours logged by each team member throughout the duration of
the project:

Team Member Approx. Hours Logged

Wesley Eze 105

Connor Poveledo 125

Jacob Damant 120

Eric Petersen 97.5

Minh Luu 87.5

Gerlof Bakker 90

Total 625

Table K.4: Approximate engineering hours logged per team member.

This breakdown reflects each team member’s contribution to the design, development, and testing phases
of the project.

K.2 Project Timeline
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K.3 Project Deliverables
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Appendix L: Updated Team Charter

The current team charter, detailing roles, responsibilities, and project management protocols, is included
in full below. This document supersedes all previous versions and serves as the governing agreement for
team operations.
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Fabri Sciences – Contact Information

Name Phone Email Specialization

Wesley Eze 587-700-2630 weze@ualberta.ca Project Management

Quang Minh Luu 587-501-2618 mqluu@ualberta.ca Robotics Engineering

Jacob Damant 780-340-9738 damant@ualberta.ca Software Development

Connor Povoledo 587-982-3742 povoledo@ualberta.ca Systems Engineering

Gerlof Bakker 780-394-7441 gerlof@ualberta.ca Hardware Design

Eric Petersen 825-419-3742 empeters@ualberta.ca Computer Vision

About Our Relationship

Group Norms

We consider the following attitudes and behaviours to be important to our group and will strive to uphold
these in our work as a group:

• Entrepreneurship

• Accountability

• Attention to detail

• Innovate to improve other’s lives (deontology)

• Going beyond expectations

• Clear communication

• Consequentialism

• Supporting one another

Decision Making Process

Approach to Decision-Making:

• Irreversible Decisions: These decisions will be made collaboratively as a group, ensuring all members
agree on the final outcome. This promotes alignment with the team’s shared goals and ideals.

• Reversible Decisions: Decisions related to individual tasks that can be modified later will be made
promptly by the responsible individual. This approach enables the team to maintain efficiency and focus
on completing the project in a timely manner.

Conflict Resolution:

• Client-Specific Disagreements:

– The team will always prioritize the client’s best interests.

– When proposing solutions, the team will present the most effective option, clearly communicating
why specific decisions are being made.

– If the client requests changes that may not align with optimal practices, the team will provide
honest, direct feedback and explain the rationale behind any recommended adjustments.
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• Internal Team Disagreements:

– All team members are encouraged to raise concerns about internal issues or challenges with
specific group members.

– These concerns will be discussed in dedicated team meetings, with the goal of collaboratively
identifying actionable solutions.

– A portion of subsequent meetings will be allocated to reviewing and validating that the identified
solutions have successfully resolved the issues.

Conflict Resolution Process

Timely Completion of Tasks: Group members are expected to complete assigned tasks promptly to
ensure the team can utilize deliverables effectively. If a deliverable is submitted on the day before the
deadline or later, and more than 50% of it requires revisions by another team member, the team will escalate
the issue by submitting a formal letter to the professor.

Attendance Policy and Escalation Process: To maintain productive collaboration, all team members
are expected to participate in group discussions and project meetings. The following escalation process will
be followed for repeated absences or lack of participation:

• First Missed Meeting/Office Hour:

– The team member will receive a verbal or written warning, emphasizing the importance of at-
tendance.

– The team will offer support to address any underlying challenges the member may be facing.

• Second Missed Meeting/Office Hour:

– A second warning will be issued.

– The member will meet with the team leader (or a designated representative) to discuss challenges
and commit to a specific improvement plan.

• Third Missed Meeting/Office Hour:

– The matter will be escalated to the professor or course instructor.

– A formal letter will be submitted, detailing the team’s efforts to resolve the issue and documenting
the member’s continued lack of participation.

– The professor will determine any further actions as necessary.

Special Considerations: If a team member anticipates missing a meeting or office hour due to valid
reasons (e.g., illness, emergencies), they must notify the team in advance and, if possible, contribute asyn-
chronously to the project. The team will assess each case individually to ensure fairness and accommodate
unforeseen circumstances, maintaining respect for all members’ challenges.

Guidelines for Communication

Primary Communication Method: Team updates will occur at least every other day to ensure trans-
parency, alignment, and efficient progress toward project goals. Updates may occur more frequently if
required by project demands or critical deadlines. These updates will occur through the currently used
Google Chat for the group.

Meeting Times and Locations: Work sessions and update meetings will primarily take place in
person in the ETLC lecture hall. The group meets on Thursdays at 8 PM, and meetings with our advisor,
Dr. Samira Dootsie, are held on Tuesdays at 2 PM. If a majority of team members cannot attend in person,
meetings will be hosted online to maintain inclusivity and collaboration.

Additional Notes: Team members are expected to check communication channels regularly and respond
promptly to messages or queries. The team will adapt communication methods as needed to address any
challenges or preferences that arise during the project.
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Project Tasks and Goals

Project Task Breakdown

Summary Status Assignee Completed /
Completed

Epic Letter of Intent Due: 2025-01-17 Completed

Task Write introduction Minh Luu Completed

Task Create project preference table Wesley Eze Completed

Task Write conclusion Gerlof Bakker Completed

Task Format report Jacob Damant Completed

Epic Gripper Prototype Due: 2025-02-24 Completed

Task Develop primitive designs for prototype Gerlof Bakker Completed

Task Render primitive designs Minh Luu Completed

Task Source competitive open-source design
alternatives

Minh Luu Completed

Task Develop CAD for gripper Wesley Eze Completed

Task Manufacture gripper Gerlof Bakker Completed

Epic ROS2 Architecture Development Due: 2025-02-24 Completed

Task Develop high-level node architecture Connor Povoledo Completed

Task Software team familiarizes themselves
with ROS

Jacob Damant Completed

Epic Phase 1 Report Due: 2025-02-09 Completed

Task Build cover page Wesley Eze Completed

Task Client letter Wesley Eze Completed

Task Table of contents Wesley Eze Completed

Task Introduction Eric Petersen Completed

Task Market study Jacob Damant Completed

Task Scope and design objectives Connor Povoledo Completed

Task Technical requirements Connor Povoledo Completed

Task Manufacturing and materials Connor Povoledo Completed

Task Additional components to design Minh Luu Completed

Task Safety requirements Minh Luu Completed

Task Decision specification matrix Gerlof Bakker Completed

Task Codes and standards Eric Petersen Completed

Task Existing patents Eric Petersen Completed

Task Project management Wesley Eze Completed
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Task Conclusion Wesley Eze Completed

Task Cost analysis Minh Luu Completed

Task Calculations Minh Luu Completed

Task Project schedule Jacob Damant Completed

Task Phase 1 Peer Review Wesley Eze Completed

Epic Complete Electronics Assembly Due: 2025-02-24 Completed

Task Source and order steppers Connor Povoledo Completed

Task Source and order cables, grommits,
pneumatics, drivers

Connor Povoledo Completed

Task Assemble steppers and drivers Jacob Damant Completed

Task Install microcontrollers Minh Luu Completed

Task Test all circuits and electrical system
interfaces

Connor Povoledo Completed

Epic Complete Mobile App Beta Due: 2025-02-24 Completed

Task Design UI/UX Eric Petersen Completed

Task Build reusable components Minh Luu Completed

Task Build injection engine Jacob Damant Completed

Task Build camera module Jacob Damant Completed

Task Build dashboard screen Wesley Eze Completed

Task Build router Gerlof Bakker Completed

Task Build dynamic styles Jacob Damant Completed

Task QA / Testing Jacob Damant Completed

Epic Deploy Cloud Resources Due: 2025-03-02 Completed

Task Build endpoint protection Gerlof Bakker Completed

Task Build API Jacob Damant Completed

Task Build all endpoints Jacob Damant Completed

Task Build repos iOS app Jacob Damant Completed

Task Integrate endpoints in iOS app Connor Povoledo Completed

Task Integrate robot-facing endpoints in
ROS system

Minh Luu Completed

Task Test all endpoints Wesley Eze Completed

Epic Develop the Computer Vision
Pipeline

Due: 2025-03-05 Completed

Task Build slide-detection algorithm Minh Luu Completed

Task Build rectification pipeline Connor Povoledo Completed

Task Build 3D positioning engine Connor Povoledo Completed
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Task Build fiducial coordination scripts Eric Petersen Completed

Epic Phase 2 Report Due: 2025-03-09 Completed

Task Finalized Cost Analysis Minh Luu Completed

Task Design Drawings Gerlof Bakker Completed

Task Design Model Connor Povoledo Completed

Task Report Writing Jacob Damant Completed

Task Phase 2 Peer Review Wesley Eze Completed

Task Introduction Eric Petersen Completed

Epic Complete Full Robotic Arm As-
sembly

Due: 2025-03-15 Completed

Task Subsystem integration testing Connor Povoledo Completed

Task Install gripper Gerlof Bakker Completed

Epic Design Compliance Matrix Due: 2025-03-17 Completed

Task Build compliance matrix Gerlof Bakker Completed

Epic QA & Testing Due: 2025-03-20 Completed

Task Edge-case prediction and testing Eric Petersen Completed

Task End-to-end system testing Wesley Eze Completed

Epic Phase 3 Report Due: 2025-04-09 Completed

Task Cover Letter Wesley Eze Completed

Task Executive Summary Eric Petersen Completed

Task Main Body Jacob Damant Completed

Task Design Matrix Gerlof Bakker Completed

Task Design Calculations Minh Luu Completed

Task Phase 3 Peer Review Connor Povoledo Completed

Epic Design Conference Due: 2025-04-04 Completed

Task Product Design Poster Jacob Damant Completed

Task Presentation Connor Povoledo Completed

Signatures

These signatures along the bottom of this document signify that the group members of Fabri Sciences Inc.
are committed to the completion of these tasks and to the agreed terms within this Charter.
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